美文网首页
线性回归 PyTorch 实现

线性回归 PyTorch 实现

作者: manyGrasses | 来源:发表于2020-02-12 11:44 被阅读0次
    1. 从零开始的实现
    import torch
    import numpy as np
    import random
    
    
    # data reader
    def data_iter(batch_size, features, labels):
        num_examples = len(features)
        indices = list(range(num_examples))
        random.shuffle(indices)
        for i in range(0, num_examples, batch_size):
            j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)])
            yield  features.index_select(0, j), labels.index_select(0, j)
    
    # generate data
    num_inputs = 2  # feature dimension
    num_examples = 1000  # sample size
    true_w = [2, -3.4]  # true coef
    true_b = 4.2  # true bias
    features = torch.randn(num_examples, num_inputs, dtype=torch.float32)
    labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
    labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float32)
    
    w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.float32)
    b = torch.zeros(1, dtype=torch.float32)
    w.requires_grad_(requires_grad=True)
    b.requires_grad_(requires_grad=True)
    
    
    def linreg(X, w, b):
        return torch.mm(X, w) + b
    
    
    def squared_loss(y_hat, y): 
        return (y_hat - y.view(y_hat.size())) ** 2 / 2
    
    
    def sgd(params, lr, batch_size): 
        for param in params:
            param.data -= lr * param.grad / batch_size # ues .data to operate param without gradient track
    
    # super parameters init
    lr = 0.03
    num_epochs = 5
    net = linreg
    loss = squared_loss
    batch_size = 10
    
    # training
    for epoch in range(num_epochs):  # training repeats num_epochs times
        # in each epoch, all the samples in dataset will be used once
        # X is the feature and y is the label of a batch sample
        for X, y in data_iter(batch_size, features, labels):
            l = loss(net(X, w, b), y).sum()  
            # calculate the gradient of batch sample loss 
            l.backward()  
            # using small batch random gradient descent to iter model parameters
            sgd([w, b], lr, batch_size)  
            # reset parameter gradient
            w.grad.data.zero_()
            b.grad.data.zero_()
        train_l = loss(net(features, w, b), labels)
        print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))
    
    print('pred w: ', w.detach().numpy(), 'true w: ', true_w, 'pred b: ', b.detach().numpy(), 'true b: ',true_b)
    
    
    1. 使用pytorch的简洁实现
    # using torch tools
    import torch
    from torch import nn
    import numpy as np
    torch.manual_seed(1)
    import torch.utils.data as Data
    torch.set_default_tensor_type('torch.FloatTensor')
    
    # generate data
    num_inputs = 2
    num_examples = 1000
    
    true_w = [2, -3.4]
    true_b = 4.2
    
    features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
    labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
    labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
    
    # read data in batch
    batch_size = 10
    dataset = Data.TensorDataset(features, labels)  # combine featues and labels of dataset
    data_iter = Data.DataLoader(
        dataset=dataset,            # torch TensorDataset format
        batch_size=batch_size,      # mini batch size
        shuffle=True,               # whether shuffle the data or not
        num_workers=2,              # read data in multithreading
    )
    
    
    # def model structure
    class LinearNet(nn.Module):
        def __init__(self, n_feature):
            super(LinearNet, self).__init__()      # call father function to init 
            self.linear = nn.Linear(n_feature, 1)  # function prototype: `torch.nn.Linear(in_features, out_features, bias=True)`
    
        def forward(self, x):
            y = self.linear(x)
            return y
        
    net = LinearNet(num_inputs)
    
    # ways to init a multilayer network
    # method one
    net = nn.Sequential(
        nn.Linear(num_inputs, 1)
        # other layers can be added here
        )
    
    # method two
    net = nn.Sequential()
    net.add_module('linear', nn.Linear(num_inputs, 1))
    # net.add_module ......
    
    # method three
    from collections import OrderedDict
    net = nn.Sequential(OrderedDict([
              ('linear', nn.Linear(num_inputs, 1))
              # ......
            ]))
    
    print(net)
    print(net[0])
    
    
    # init 
    from torch.nn import init
    init.normal_(net[0].weight, mean=0.0, std=0.01)
    init.constant_(net[0].bias, val=0.0)  # or you can use `net[0].bias.data.fill_(0)` to modify it directly
    loss = nn.MSELoss()    # nn built-in squared loss function
                           # function prototype: `torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')`
    import torch.optim as optim
    optimizer = optim.SGD(net.parameters(), lr=0.03)   # built-in random gradient descent function
    print(optimizer)  # function prototype: `torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)`
    # train
    num_epochs = 3
    for epoch in range(1, num_epochs + 1):
        for X, y in data_iter:
            output = net(X)
            l = loss(output, y.view(-1, 1))
            optimizer.zero_grad() # reset gradient, equal to net.zero_grad()
            l.backward()
            optimizer.step()
        print('epoch %d, loss: %f' % (epoch, l.item()))
    
    # result comparision
    dense = net[0]
    print(true_w, dense.weight.data)
    print(true_b, dense.bias.data)
    

    相关文章

      网友评论

          本文标题:线性回归 PyTorch 实现

          本文链接:https://www.haomeiwen.com/subject/wvvqfhtx.html