numpy lookfor()函数,查询函数文档,且不限于numpy模块
import numpy as np
np.lookfor("average")
Search results for 'average'
----------------------------
numpy.average
Compute the weighted average along the specified axis.
numpy.mean
Compute the arithmetic mean along the specified axis.
numpy.nanmean
Compute the arithmetic mean along the specified axis, ignoring NaNs.
numpy.ma.average
Return the weighted average of array over the given axis.
numpy.ma.mean
Returns the average of the array elements along given axis.
numpy.matrix.mean
Returns the average of the matrix elements along the given axis.
numpy.chararray.mean
Returns the average of the array elements along given axis.
numpy.ma.MaskedArray.mean
Returns the average of the array elements along given axis.
numpy.cov
Estimate a covariance matrix, given data and weights.
numpy.irr
Return the Internal Rate of Return (IRR).
numpy.std
Compute the standard deviation along the specified axis.
numpy.sum
Sum of array elements over a given axis.
numpy.var
Compute the variance along the specified axis.
numpy.sort
Return a sorted copy of an array.
numpy.median
Compute the median along the specified axis.
numpy.nanstd
Compute the standard deviation along the specified axis, while
numpy.nanvar
Compute the variance along the specified axis, while ignoring NaNs.
numpy.nanmedian
Compute the median along the specified axis, while ignoring NaNs.
numpy.partition
Return a partitioned copy of an array.
numpy.ma.var
Compute the variance along the specified axis.
numpy.apply_along_axis
Apply a function to 1-D slices along the given axis.
numpy.ma.apply_along_axis
Apply a function to 1-D slices along the given axis.
numpy.ma.MaskedArray.var
Compute the variance along the specified axis.
numpy.random.PCG64.advance
advance(delta)
numpy.random.Philox.advance
advance(delta)
numpy.random.Generator.dirichlet
Draw samples from the Dirichlet distribution.
numpy.random.RandomState.dirichlet
Draw samples from the Dirichlet distribution.
numpy.random.Generator.multivariate_normal
Draw random samples from a multivariate normal distribution.
numpy.random.RandomState.multivariate_normal
Draw random samples from a multivariate normal distribution.
jupyter 的特殊功能:将光标移到函数末尾,shift+tab可以查看函数文档,再次shift+tab显示更详细的内容
例如下面:
np.max()
Signature:
np.max(
a,
axis=None,
out=None,
keepdims=<no value>,
initial=<no value>,
where=<no value>,
)
Docstring:
Return the maximum of an array or maximum along an axis.
Parameters
----------
a : array_like
Input data.
axis : None or int or tuple of ints, optional
Axis or axes along which to operate. By default, flattened input is
used.
.. versionadded:: 1.7.0
If this is a tuple of ints, the maximum is selected over multiple axes,
instead of a single axis or all the axes as before.
out : ndarray, optional
Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.
See `ufuncs-output-type` for more details.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input array.
If the default value is passed, then `keepdims` will not be
passed through to the `amax` method of sub-classes of
`ndarray`, however any non-default value will be. If the
sub-class' method does not implement `keepdims` any
exceptions will be raised.
批量注释,取消:选中要注释的段落后 ctr+/
批量右移:tab
批量左移:shift+tab
网友评论