美文网首页
38.opengl-字体渲染

38.opengl-字体渲染

作者: 天叔 | 来源:发表于2020-10-07 16:28 被阅读0次

    一、文本渲染原理

    1.1经典文本渲染:位图字体

    早期的文本渲染,是将需要的字符集放到一个大纹理中,这个纹理称为“位图字体”,渲染某个字符时,通过查找坐标,找到该字符对应的区域并渲染出来,再启动混合,让字符纹理的背景保持透明,非常容易理解。

    这种方式的缺点也比较明显:
    1)字符集非常小,不支持拓展,因为已经生成了字符表);
    2)已经预光栅化了,所以分辨率已经固化了,修改分辨率需要重新编译一张字符纹理表(“纹理表”是笔者自创的称呼)

    1.2 现代文本渲染

    上面的图很清楚的说明了一个字符的定义规则,注意,有些字符在基准线之上,有少数字符在基准线之下,比如g p j等。
    关于字符更详细的定义,参考:https://www.supremo.co.uk/typeterms/

    基于经典文本渲染的瓶颈,现在有更好的文本渲染方式,基于FreeType处理。
    FreeType有以下优点:
    1)跨平台
    2)能加载TrueType字体,TrueType不是基于像素定义的,而是通过数学公式(曲线)来定义,类似矢量图像,所以方便渲染不同大小的字形,有更好的适配能力

    二、基于freetype渲染文本

    文本渲染
    文本轮廓
    关闭混合,可以看到每个字符占的区域大小是不一样的
    2.1 先看看着shader的实现

    顶点着色器:很简单,有个小技巧,一个vec4 xy存字符position,zw存纹理,节省内存

    #version 330 core
    layout (location = 0) in vec4 vertex;
    out vec2 TexCoords;
    
    uniform mat4 projection;
    
    void main ()
    {
        gl_Position = projection * vec4(vertex.xy, 0.0, 1.0); // z坐标=0,在原点,w坐标为1,无缩放
        TexCoords = vertex.zw;
    }
    

    片段着色器: sampled取出r值,字形原始数据没有颜色,r通道存放的是alpha值,r值与设置的color做混合,即可得到带颜色的文字。

    注意下面代码中注释的部分,如果不开启混合,需要判断alpha通道的值为0时,进行discard操作,否则按照当前的逻辑字符会渲染成一个矩形图案。开启混合模式,当前窗口的颜色缓冲会把字符的背景中镂空的部分覆盖掉

    #version 330 core
    in vec2 TexCoords;
    out vec4 color;
    
    uniform sampler2D text;
    uniform vec3 textColor;
    
    void main()
    {
        vec4 sampled = vec4(1.0, 1.0, 1.0, texture(text, TexCoords).r);
       // if (sampled.w == 0) {
       //     discard;
       // }
        color = vec4(textColor, 1.0) * sampled;
    }
    
    2.1 工程中引入需要的头文件
    #include <ft2build.h>
    #include FT_FREETYPE_H  
    
    2.2 启用混合模式,某则渲染出来是方形图案(不启用混合,通过其他方式也可以实现)
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    
    2.3 freetype库初始化
     // FreeType
        FT_Library ft;
        // All functions return a value different than 0 whenever an error occurred
        if (FT_Init_FreeType(&ft)) {
            std::cout << "ERROR::freetype: Could not init FreeType Library" << std::endl;
        }
        // Load font as face
        FT_Face face;
        if (FT_New_Face(ft, "fonts/Antonio-Bold.ttf", 0, &face)) {
            std::cout << "ERROR::FREETYPE: Failed to load font" << std::endl;
        }
        FT_Set_Pixel_Sizes(face, 0, 48);
        glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
    
    2.4 加载128个常用字符(降低使用难度),存放到map中,使用完记得释放freetype
        for (GLubyte c = 0; c < 128; c++) {
            // Load character glyph
            if (FT_Load_Char(face, c, FT_LOAD_RENDER))
            {
                std::cout << "ERROR::FREETYPE: Failed to load Glyph" << std::endl;
                continue;
            }
            
            // Generate texture
            GLuint texture;
            glGenTextures(1, &texture);
            glBindTexture(GL_TEXTURE_2D, texture);
            glTexImage2D(
                         GL_TEXTURE_2D,
                         0,
                         GL_RED,
                         face->glyph->bitmap.width,
                         face->glyph->bitmap.rows,
                         0,
                         GL_RED,
                         GL_UNSIGNED_BYTE,
                         face->glyph->bitmap.buffer);
            
            // Set texture options
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    
            // Now store character for later use
            Character character = {
                texture,
                glm::ivec2(face->glyph->bitmap.width, face->glyph->bitmap.rows),
                glm::ivec2(face->glyph->bitmap_left, face->glyph->bitmap_top),
                static_cast<GLuint>(face->glyph->advance.x)
            };
            Characters.insert(std::pair<GLchar, Character>(c, character));
        }
        // Destroy FreeType once we're finished
        FT_Done_Face(face);
        FT_Done_FreeType(ft);
    
    2.5 render loop中渲染两端测试文字

    注意,这里渲染文字使用正交矩阵,没有像之前使用投影矩阵,并且投影矩阵的左下角是(0, 0)坐标

    glm::mat4 projection = glm::ortho(0.0f, static_cast<GLfloat>(SCR_WIDTH), 0.0f, static_cast<GLfloat>(SCR_HEIGHT));
    
    RenderText(shader, "This is sample text", 25.0f, 25.0f, 1.0f, glm::vec3(0.5f, 0.8f, 0.2f));
    RenderText(shader, "(C) LearnOpenGL.com", 540.0f, 570.0f, 0.5f, glm::vec3(0.3f, 0.7f, 0.9f));
    

    RenderText的逻辑不复杂,直接看代码理解即可

    void RenderText(Shader &shader, std::string text, GLfloat x, GLfloat y, GLfloat scale, glm::vec3 color)
    {
        shader.use();
        shader.setVec3("textColor", color.x, color.y, color.z);
        glActiveTexture(GL_TEXTURE0);
        glBindVertexArray(VAO);
        
        std::string::const_iterator c;
        for (c = text.begin(); c != text.end(); c++) {
            Character ch = Characters[*c];
            
            GLfloat xpos = x + ch.Bearing.x * scale;
            GLfloat ypos = y - (ch.Size.y - ch.Bearing.y) * scale;
            
            GLfloat w = ch.Size.x * scale;
            GLfloat h = ch.Size.y * scale;
            
            // Update VBO for each character
            GLfloat vertices[6][4] = {
                {xpos,      ypos + h, 0.0, 0.0},
                {xpos,      ypos,     0.0, 1.0},
                {xpos + w,  ypos,     1.0, 1.0},
                {xpos,      ypos + h, 0.0, 0.0},
                {xpos + w,  ypos,     1.0, 1.0},
                {xpos + w,  ypos + h, 1.0, 0.0},
            };
            // Render glyph texture over quad
            glBindTexture(GL_TEXTURE_2D, ch.TextureID);
            // Update content of VBO memory
            glBindBuffer(GL_ARRAY_BUFFER, VBO);
            glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(vertices), vertices);
            
            glBindBuffer(GL_ARRAY_BUFFER, 0);
            //Render quad
            glDrawArrays(GL_TRIANGLES, 0, 6);
            // Now advance cursors for next glyph (note that advance is number of 1/64 pixels)
            x += (ch.Advance >> 6) * scale;
        }
        glBindVertexArray(0);
        glBindTexture(GL_TEXTURE_2D, 0);
    }
    

    三、补充:mac freetype安装配置,不复杂,简单说明

    如果是Android/iOS,需通过freetype源码编译对应的平台库,前端直接引用freetype.js更方便

    1. brew install freetype

    安装完成会在local/include/freetype2/下生成头文件

    因为freetype的代码依赖结构,需要修改header文件,讲freetype2目录下的头文件copy到include下,否则会编译报错

    2. Xcode环境变量配置

    2.1 xcode->preference->locations->custom paths


    2.2 Search Paths 增加Header和 Library


    2.3 Build Phases 增加库依赖


    四、完整代码

    #include <glad/glad.h>
    #include <GLFW/glfw3.h>
    #define STB_IMAGE_IMPLEMENTATION
    #include "stb_image.h"
    
    #include <glm/glm.hpp>
    #include <glm/gtc/matrix_transform.hpp>
    #include <glm/gtc/type_ptr.hpp>
    
    #include "Shader.h"
    #include "camera.h"
    #include "model.h"
    
    #include <iostream>
    #include <random>
    #include <ft2build.h>
    #include FT_FREETYPE_H
    
    // Holds all state information relevant to a character as loaded using FreeType
    struct Character {
        GLuint TextureID; // ID handle of the glyph texture
        glm::ivec2 Size;
        glm::ivec2 Bearing; // bearing 这里翻译成方位/方向
        GLuint Advance;
    };
    
    std::map<GLchar, Character> Characters;
    GLuint VAO, VBO;
    
    void RenderText(Shader &shader, std::string text, GLfloat x, GLfloat y, GLfloat scale, glm::vec3 color);
    
    void framebuffer_size_callback(GLFWwindow* window, int width, int height);
    void mouse_callback(GLFWwindow* window, double xpos, double ypos);
    void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
    void processInput(GLFWwindow *window);
    unsigned int loadTexture(const char *path);
    unsigned int loadCubemap(vector<std::string> faces);
    void renderScene (const Shader &shader);
    void renderCube();
    void RenderQuad();
    void renderSphere();
    
    // settings
    const unsigned int SCR_WIDTH = 800;
    const unsigned int SCR_HEIGHT = 600;
    
    bool blinn = false;
    bool blinnKeyPressed = false;
    bool gammaEnabled = true;
    bool gammaKeyPressed = false;
    bool bloom = true;
    bool hdr = true; //change with 'space'
    float exposure = 1.0f; // change with Q and E
    
    // camera
    Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
    float lastX = (float)SCR_WIDTH / 2.0;
    float lastY = (float)SCR_HEIGHT / 2.0;
    bool firstMouse = true;
    
    // timing
    float deltaTime = 0.0f;
    float lastFrame = 0.0f;
    
    unsigned int draw_mode = 1;
    
    float lerp(float a, float b, float f)
    {
        return a + f * (b - a);
    }
    
    int main()
    {
        // glfw: initialize and configure
        // ------------------------------
        glfwInit();
        glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
        glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    //    glfwWindowHint(GLFW_SAMPLES, 4);
    
        glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
        
    #ifdef __APPLE__
        glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
    #endif
        
        // glfw window creation
        // --------------------
        GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "天哥学opengl", NULL, NULL);
        if (window == NULL)
        {
            std::cout << "Failed to create GLFW window" << std::endl;
            glfwTerminate();
            return -1;
        }
        
        glfwMakeContextCurrent(window);
        glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
        glfwSetCursorPosCallback(window, mouse_callback);
        glfwSetScrollCallback(window, scroll_callback);
        
        // tell GLFW to capture our mouse
        //    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
        
        // glad: load all OpenGL function pointers
        // ---------------------------------------
        if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
        {
            std::cout << "Failed to initialize GLAD" << std::endl;
            return -1;
        }
        glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
    //    glPolygonMode(GL_FRONT_AND_BACK ,GL_LINE );
        glEnable(GL_CULL_FACE);
    //    glEnable(GL_BLEND);
    //    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
        // build and compile shaders
        
        Shader shader("text.vs", "text.fs");
        glm::mat4 projection = glm::ortho(0.0f, static_cast<GLfloat>(SCR_WIDTH), 0.0f, static_cast<GLfloat>(SCR_HEIGHT));
        shader.use();
        shader.setMat4("projection", projection);
        
        // FreeType
        FT_Library ft;
        // All functions return a value different than 0 whenever an error occurred
        if (FT_Init_FreeType(&ft)) {
            std::cout << "ERROR::freetype: Could not init FreeType Library" << std::endl;
        }
        
        // Load font as face
        FT_Face face;
        if (FT_New_Face(ft, "fonts/Antonio-Bold.ttf", 0, &face)) {
            std::cout << "ERROR::FREETYPE: Failed to load font" << std::endl;
        }
        
        FT_Set_Pixel_Sizes(face, 0, 48);
        
        glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
        
        for (GLubyte c = 0; c < 128; c++) {
            // Load character glyph
            if (FT_Load_Char(face, c, FT_LOAD_RENDER))
            {
                std::cout << "ERROR::FREETYPE: Failed to load Glyph" << std::endl;
                continue;
            }
            
            // Generate texture
            GLuint texture;
            glGenTextures(1, &texture);
            glBindTexture(GL_TEXTURE_2D, texture);
            glTexImage2D(
                         GL_TEXTURE_2D,
                         0,
                         GL_RED,
                         face->glyph->bitmap.width,
                         face->glyph->bitmap.rows,
                         0,
                         GL_RED,
                         GL_UNSIGNED_BYTE,
                         face->glyph->bitmap.buffer);
            
            // Set texture options
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    
            // Now store character for later use
            Character character = {
                texture,
                glm::ivec2(face->glyph->bitmap.width, face->glyph->bitmap.rows),
                glm::ivec2(face->glyph->bitmap_left, face->glyph->bitmap_top),
                static_cast<GLuint>(face->glyph->advance.x)
            };
            Characters.insert(std::pair<GLchar, Character>(c, character));
        }
        
        glBindTexture(GL_TEXTURE_2D, 0);
        // Destroy FreeType once we're finished
        FT_Done_Face(face);
        FT_Done_FreeType(ft);
    
        // Confiture VAO/VBO for texture quads
        glGenVertexArrays(1, &VAO);
        glGenBuffers(1, &VBO);
        glBindVertexArray(VAO);
        glBindBuffer(GL_ARRAY_BUFFER, VBO);
        glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat) * 6 * 4, NULL, GL_DYNAMIC_DRAW);
        glEnableVertexAttribArray(0);
        glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 4 * sizeof(GLfloat), 0);
        glBindVertexArray(0);
        glBindVertexArray(0);
        
        // render loop
        // -----------
        while (!glfwWindowShouldClose(window))
        {
            // per-frame time logic
            float currentFrame = glfwGetTime();
            deltaTime = currentFrame - lastFrame;
            lastFrame = currentFrame;
    
            processInput(window);
            
            //render
            glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
            glClear(GL_COLOR_BUFFER_BIT);
            
            RenderText(shader, "This is sample text", 25.0f, 25.0f, 1.0f, glm::vec3(0.5f, 0.8f, 0.2f));
            RenderText(shader, "(C) LearnOpenGL.com", 540.0f, 570.0f, 0.5f, glm::vec3(0.3f, 0.7f, 0.9f));
    
            // -------------------------------------------------------------------------------
            glfwSwapBuffers(window);
            glfwPollEvents();
        }
        
        // glfw: terminate, clearing all previously allocated GLFW resources.
        // ------------------------------------------------------------------
        glfwTerminate();
        return 0;
    }
    
    void RenderText(Shader &shader, std::string text, GLfloat x, GLfloat y, GLfloat scale, glm::vec3 color)
    {
        shader.use();
        shader.setVec3("textColor", color.x, color.y, color.z);
        glActiveTexture(GL_TEXTURE0);
        glBindVertexArray(VAO);
        
        std::string::const_iterator c;
        for (c = text.begin(); c != text.end(); c++) {
            Character ch = Characters[*c];
            
            GLfloat xpos = x + ch.Bearing.x * scale;
            GLfloat ypos = y - (ch.Size.y - ch.Bearing.y) * scale;
            
            GLfloat w = ch.Size.x * scale;
            GLfloat h = ch.Size.y * scale;
            
            // Update VBO for each character
            GLfloat vertices[6][4] = {
                {xpos,      ypos + h, 0.0, 0.0},
                {xpos,      ypos,     0.0, 1.0},
                {xpos + w,  ypos,     1.0, 1.0},
                {xpos,      ypos + h, 0.0, 0.0},
                {xpos + w,  ypos,     1.0, 1.0},
                {xpos + w,  ypos + h, 1.0, 0.0},
            };
            // Render glyph texture over quad
            glBindTexture(GL_TEXTURE_2D, ch.TextureID);
            // Update content of VBO memory
            glBindBuffer(GL_ARRAY_BUFFER, VBO);
            glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(vertices), vertices);
            
            glBindBuffer(GL_ARRAY_BUFFER, 0);
            //Render quad
            glDrawArrays(GL_TRIANGLES, 0, 6);
            // Now advance cursors for next glyph (note that advance is number of 1/64 pixels)
            x += (ch.Advance >> 6) * scale;
        }
        glBindVertexArray(0);
        glBindTexture(GL_TEXTURE_2D, 0);
    }
    
    // process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
    // ---------------------------------------------------------------------------------------------------------
    
    bool startRecord = false;
    
    void processInput(GLFWwindow *window)
    {
        if (glfwGetKey(window, GLFW_KEY_1) == GLFW_PRESS) {
            draw_mode = 1;
        }
        if (glfwGetKey(window, GLFW_KEY_2) == GLFW_PRESS) {
            draw_mode = 2;
        }
        if (glfwGetKey(window, GLFW_KEY_3) == GLFW_PRESS) {
            draw_mode = 3;
        }
        if (glfwGetKey(window, GLFW_KEY_4) == GLFW_PRESS) {
            draw_mode = 4;
        }
        
        if (glfwGetKey(window, GLFW_KEY_B) == GLFW_PRESS && !gammaKeyPressed)
        {
            gammaEnabled = !gammaEnabled;
            gammaKeyPressed = true;
        }
        if (glfwGetKey(window, GLFW_KEY_B) == GLFW_RELEASE)
        {
            gammaKeyPressed = false;
        }
        if (glfwGetKey(window, GLFW_KEY_Y))
        {
            std::cout << "Y" << std::endl;
            startRecord = true;
            firstMouse = true;
        }
        
        if (glfwGetKey(window, GLFW_KEY_N))
        {
            std::cout << "N" << std::endl;
            
            startRecord = false;
        }
        
        if (startRecord) {
            return;
        }
        
        if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
            glfwSetWindowShouldClose(window, true);
        
        if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
            camera.ProcessKeyboard(FORWARD, deltaTime);
        if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
            camera.ProcessKeyboard(BACKWARD, deltaTime);
        if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
            camera.ProcessKeyboard(LEFT, deltaTime);
        if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
            camera.ProcessKeyboard(RIGHT, deltaTime);
        if (glfwGetKey(window, GLFW_KEY_Q) == GLFW_PRESS)
            exposure -= 0.5 * deltaTime;
        if (glfwGetKey(window, GLFW_KEY_E) == GLFW_PRESS)
            exposure += 0.5 * deltaTime;
        
        if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_PRESS && !gammaKeyPressed)
        {
            hdr = !hdr;
            gammaKeyPressed = true;
        }
        if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_RELEASE)
        {
            gammaKeyPressed = false;
        }
    }
    
    // glfw: whenever the window size changed (by OS or user resize) this callback function executes
    // ---------------------------------------------------------------------------------------------
    void framebuffer_size_callback(GLFWwindow* window, int width, int height)
    {
        // make sure the viewport matches the new window dimensions; note that width and
        // height will be significantly larger than specified on retina displays.
        glViewport(0, 0, width, height);
    }
    
    // glfw: whenever the mouse moves, this callback is called
    // -------------------------------------------------------
    void mouse_callback(GLFWwindow* window, double xpos, double ypos)
    {
        //    std::cout << "xpos : " << xpos << std::endl;
        //    std::cout << "ypos : " << ypos << std::endl;
        
        if (startRecord) {
            return;
        }
        
        if (firstMouse)
        {
            lastX = xpos;
            lastY = ypos;
            firstMouse = false;
        }
        
        float xoffset = xpos - lastX;
        float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top
        
        lastX = xpos;
        lastY = ypos;
        
        //    std::cout << "xoffset : " << xoffset << std::endl;
        //    std::cout << "yoffset : " << yoffset << std::endl;
        
        camera.ProcessMouseMovement(xoffset, yoffset);
    }
    
    // glfw: whenever the mouse scroll wheel scrolls, this callback is called
    // ----------------------------------------------------------------------
    void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
    {
        camera.ProcessMouseScroll(yoffset);
    }
    
    // utility function for loading a 2D texture from file
    // ---------------------------------------------------
    unsigned int loadTexture(char const * path)
    {
        unsigned int textureID;
        glGenTextures(1, &textureID);
        
        int width, height, nrComponents;
        unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
        if (data)
        {
            GLenum format;
            if (nrComponents == 1)
                format = GL_RED;
            else if (nrComponents == 3)
                format = GL_RGB;
            else if (nrComponents == 4)
                format = GL_RGBA;
            
            glBindTexture(GL_TEXTURE_2D, textureID);
            glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
            glGenerateMipmap(GL_TEXTURE_2D);
            
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
            
            stbi_image_free(data);
        }
        else
        {
            std::cout << "Texture failed to load at path: " << path << std::endl;
            stbi_image_free(data);
        }
        
        return textureID;
    }
    
    
    unsigned int loadCubemap(vector<std::string> faces)
    {
        unsigned int textureID;
        glGenTextures(1, &textureID);
        glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);
        
        int width, height, nrChannels;
        for (unsigned int i = 0; i < faces.size(); i++) {
            unsigned char *data = stbi_load(faces[i].c_str(), &width, &height, &nrChannels, 0);
            
            if (data)
            {
                glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
                stbi_image_free(data);
            }
            else
            {
                std::cout << "Cubemap texture failed to load at path: " << faces[i] << std::endl;
                stbi_image_free(data);
            }
            glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
            glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
            glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
            glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
            glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
            glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
        }
        
        return textureID;
    }
    
    void renderScene(const Shader &shader)
    {
        // room cube
        glm::mat4 model = glm::mat4(1.0f);
        model = glm::scale(model, glm::vec3(5.0f));
        shader.setMat4("model", model);
        glDisable(GL_CULL_FACE); // note that we disable culling here since we render 'inside' the cube instead of the usual 'outside' which throws off the normal culling methods.
        shader.setInt("reverse_normals", 1); // A small little hack to invert normals when drawing cube from the inside so lighting still works.
        renderCube();
        shader.setInt("reverse_normals", 0); // and of course disable it
        glEnable(GL_CULL_FACE);
        // cubes
        model = glm::mat4(1.0f);
        model = glm::translate(model, glm::vec3(4.0f, -3.5f, 0.0));
        model = glm::scale(model, glm::vec3(0.5f));
        shader.setMat4("model", model);
        renderCube();
        model = glm::mat4(1.0f);
        model = glm::translate(model, glm::vec3(2.0f, 3.0f, 1.0));
        model = glm::scale(model, glm::vec3(0.75f));
        shader.setMat4("model", model);
        renderCube();
        model = glm::mat4(1.0f);
        model = glm::translate(model, glm::vec3(-3.0f, -1.0f, 0.0));
        model = glm::scale(model, glm::vec3(0.5f));
        shader.setMat4("model", model);
        renderCube();
        model = glm::mat4(1.0f);
        model = glm::translate(model, glm::vec3(-1.5f, 1.0f, 1.5));
        model = glm::scale(model, glm::vec3(0.5f));
        shader.setMat4("model", model);
        renderCube();
        model = glm::mat4(1.0f);
        model = glm::translate(model, glm::vec3(-1.5f, 2.0f, -3.0));
        model = glm::rotate(model, glm::radians(60.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
        model = glm::scale(model, glm::vec3(0.75f));
        shader.setMat4("model", model);
        renderCube();
    }
    
    
    // renderCube() renders a 1x1 3D cube in NDC.
    // -------------------------------------------------
    unsigned int cubeVAO = 0;
    unsigned int cubeVBO = 0;
    void renderCube()
    {
        // initialize (if necessary)
        if (cubeVAO == 0)
        {
            float vertices[] = {
                // back face
                -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
                1.0f,  1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 1.0f, 1.0f, // top-right
                1.0f, -1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
                1.0f,  1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 1.0f, 1.0f, // top-right
                -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
                -1.0f,  1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 0.0f, 1.0f, // top-left
                // front face
                -1.0f, -1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f, 0.0f, // bottom-left
                1.0f, -1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f, 0.0f, // bottom-right
                1.0f,  1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f, 1.0f, // top-right
                1.0f,  1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f, 1.0f, // top-right
                -1.0f,  1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f, 1.0f, // top-left
                -1.0f, -1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f, 0.0f, // bottom-left
                // left face
                -1.0f,  1.0f,  1.0f, -1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-right
                -1.0f,  1.0f, -1.0f, -1.0f,  0.0f,  0.0f, 1.0f, 1.0f, // top-left
                -1.0f, -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-left
                -1.0f, -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-left
                -1.0f, -1.0f,  1.0f, -1.0f,  0.0f,  0.0f, 0.0f, 0.0f, // bottom-right
                -1.0f,  1.0f,  1.0f, -1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-right
                // right face
                1.0f,  1.0f,  1.0f,  1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-left
                1.0f, -1.0f, -1.0f,  1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-right
                1.0f,  1.0f, -1.0f,  1.0f,  0.0f,  0.0f, 1.0f, 1.0f, // top-right
                1.0f, -1.0f, -1.0f,  1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-right
                1.0f,  1.0f,  1.0f,  1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-left
                1.0f, -1.0f,  1.0f,  1.0f,  0.0f,  0.0f, 0.0f, 0.0f, // bottom-left
                // bottom face
                -1.0f, -1.0f, -1.0f,  0.0f, -1.0f,  0.0f, 0.0f, 1.0f, // top-right
                1.0f, -1.0f, -1.0f,  0.0f, -1.0f,  0.0f, 1.0f, 1.0f, // top-left
                1.0f, -1.0f,  1.0f,  0.0f, -1.0f,  0.0f, 1.0f, 0.0f, // bottom-left
                1.0f, -1.0f,  1.0f,  0.0f, -1.0f,  0.0f, 1.0f, 0.0f, // bottom-left
                -1.0f, -1.0f,  1.0f,  0.0f, -1.0f,  0.0f, 0.0f, 0.0f, // bottom-right
                -1.0f, -1.0f, -1.0f,  0.0f, -1.0f,  0.0f, 0.0f, 1.0f, // top-right
                // top face
                -1.0f,  1.0f, -1.0f,  0.0f,  1.0f,  0.0f, 0.0f, 1.0f, // top-left
                1.0f,  1.0f , 1.0f,  0.0f,  1.0f,  0.0f, 1.0f, 0.0f, // bottom-right
                1.0f,  1.0f, -1.0f,  0.0f,  1.0f,  0.0f, 1.0f, 1.0f, // top-right
                1.0f,  1.0f,  1.0f,  0.0f,  1.0f,  0.0f, 1.0f, 0.0f, // bottom-right
                -1.0f,  1.0f, -1.0f,  0.0f,  1.0f,  0.0f, 0.0f, 1.0f, // top-left
                -1.0f,  1.0f,  1.0f,  0.0f,  1.0f,  0.0f, 0.0f, 0.0f  // bottom-left
            };
            glGenVertexArrays(1, &cubeVAO);
            glGenBuffers(1, &cubeVBO);
            // fill buffer
            glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
            glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
            // link vertex attributes
            glBindVertexArray(cubeVAO);
            glEnableVertexAttribArray(0);
            glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
            glEnableVertexAttribArray(1);
            glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));
            glEnableVertexAttribArray(2);
            glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
            glBindBuffer(GL_ARRAY_BUFFER, 0);
            glBindVertexArray(0);
        }
        glBindVertexArray(cubeVAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);
        glBindVertexArray(0);
    }
    
    // RenderQuad() Renders a 1x1 quad in NDC
    unsigned int quadVAO = 0;
    unsigned int quadVBO;
    
    void RenderQuad()
    {
        if (quadVAO == 0)
        {
            GLfloat quadVertices[] = {
                // Positions        // Texture Coords
                -1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
                -1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
                1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
                1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
            };
            // Setup plane VAO
            glGenVertexArrays(1, &quadVAO);
            glGenBuffers(1, &quadVBO);
            glBindVertexArray(quadVAO);
            glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
            glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
            glEnableVertexAttribArray(0);
            glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
            glEnableVertexAttribArray(1);
            glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
        }
        glBindVertexArray(quadVAO);
        glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
        glBindVertexArray(0);
    }
    
    unsigned int sphereVAO = 0;
    unsigned int indexCount;
    void renderSphere()
    {
        if (sphereVAO == 0)
        {
            glGenVertexArrays(1, &sphereVAO);
    
            unsigned int vbo, ebo;
            glGenBuffers(1, &vbo);
            glGenBuffers(1, &ebo);
    
            std::vector<glm::vec3> positions;
            std::vector<glm::vec2> uv;
            std::vector<glm::vec3> normals;
            std::vector<unsigned int> indices;
    
            const unsigned int X_SEGMENTS = 64;
            const unsigned int Y_SEGMENTS = 64;
            const float PI = 3.14159265359;
            for (unsigned int y = 0; y <= Y_SEGMENTS; ++y)
            {
                for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
                {
                    float xSegment = (float)x / (float)X_SEGMENTS;
                    float ySegment = (float)y / (float)Y_SEGMENTS;
                    float xPos = std::cos(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
                    float yPos = std::cos(ySegment * PI);
                    float zPos = std::sin(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
    
                    positions.push_back(glm::vec3(xPos, yPos, zPos));
                    uv.push_back(glm::vec2(xSegment, ySegment));
                    normals.push_back(glm::vec3(xPos, yPos, zPos));
                }
            }
    
            bool oddRow = false;
            for (unsigned int y = 0; y < Y_SEGMENTS; ++y)
            {
                if (!oddRow) // even rows: y == 0, y == 2; and so on
                {
                    for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
                    {
                        indices.push_back(y       * (X_SEGMENTS + 1) + x);
                        indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
                    }
                }
                else
                {
                    for (int x = X_SEGMENTS; x >= 0; --x)
                    {
                        indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
                        indices.push_back(y       * (X_SEGMENTS + 1) + x);
                    }
                }
                oddRow = !oddRow;
            }
            indexCount = indices.size();
    
            std::vector<float> data;
            for (unsigned int i = 0; i < positions.size(); ++i)
            {
                data.push_back(positions[i].x);
                data.push_back(positions[i].y);
                data.push_back(positions[i].z);
                if (uv.size() > 0)
                {
                    data.push_back(uv[i].x);
                    data.push_back(uv[i].y);
                }
                if (normals.size() > 0)
                {
                    data.push_back(normals[i].x);
                    data.push_back(normals[i].y);
                    data.push_back(normals[i].z);
                }
            }
            glBindVertexArray(sphereVAO);
            glBindBuffer(GL_ARRAY_BUFFER, vbo);
            glBufferData(GL_ARRAY_BUFFER, data.size() * sizeof(float), &data[0], GL_STATIC_DRAW);
            glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
            glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);
            float stride = (3 + 2 + 3) * sizeof(float);
            glEnableVertexAttribArray(0);
            glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, stride, (void*)0);
            glEnableVertexAttribArray(1);
            glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, stride, (void*)(3 * sizeof(float)));
            glEnableVertexAttribArray(2);
            glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, stride, (void*)(5 * sizeof(float)));
        }
    
        glBindVertexArray(sphereVAO);
        glDrawElements(GL_TRIANGLE_STRIP, indexCount, GL_UNSIGNED_INT, 0);
    }
    

    相关文章

      网友评论

          本文标题:38.opengl-字体渲染

          本文链接:https://www.haomeiwen.com/subject/wxsxpktx.html