美文网首页
二叉树系列之BST

二叉树系列之BST

作者: 夜里清风徐来 | 来源:发表于2018-12-24 00:34 被阅读0次

什么是BST?

1. 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;

2. 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;

3. 它的左右子树也分别为二叉排序树。

二叉排序树的数据排序方式为 [左孩子节点 < 根节点 < 右孩子节点],左子树和父节点值最接近的节点为最靠右的节点,右子树和父节点值最接近的点为最靠左的点。

如下图所示:

BST

BST的java代码实现:包含基础的 插入 删除 查找


public class BinarySearchTree{

    private Node root;

    private int size;

    public BinarySearchTree(Node root){

        this.root=root;

        size++;

    }

    public int getSize(){

        return this.size;

    }

    public boolean contains(Name name){

        return contains(name,this.root);

        //return false;

    }

    private boolean contains(Name n,Node root){

        if(root==null){

            return false;

        }

        int compare=n.compareTo(root.element);

        if(compare>0){

            if(root.right!=null){

                return contains(n,root.right);

            }else{

                return false;

            }

        }else if(compare<0){

            if(root.left!=null){

                return contains(n,root.left);

            }else{

                return false;

            }

        }else{

            return true;

        }

    }

    public boolean insert(Name n){

        boolean flag = insert(n,this.root);

        if(flag) size++;

        return flag;

    }

    private boolean insert(Name n,Node root){

        if(root==null){

            this.root=new Node(n);

            return true;

        }else if(root.element.compareTo(n)>0){

            if(root.left!=null){

                return insert(n,root.left);

            }else{

                root.left=new Node(n);

                return true;

            }

        }else if(root.element.compareTo(n)<0){

            if(root.right!=null){

                return insert(n,root.right);

            }else{

                root.right=new Node(n);

                return true;

            }

        }else{

            root.frequency++;

            return true;

        }

    }

    public boolean remove(Name name){

        root = remove(name,this.root);

        if(root != null){

            size--;

            return true;

        }

        return false;

    }

    private Node remove(Name name,Node root){

        int compare = root.element.compareTo(name);

        if(compare == 0){

            if(root.frequency>1){

                root.frequency--;

            }else{

                /**根据删除节点的类型,分成以下几种情况

                **①如果被删除的节点是叶子节点,直接删除

                **②如果被删除的节点含有一个子节点,让指向该节点的指针指向他的儿子节点

                **③如果被删除的节点含有两个子节点,找到左字数的最大节点,并替换该节点

                **/

                if(root.left == null && root.right == null){

                    root = null;

                }else if(root.left !=null && root.right == null){

                    root = root.left;

                }else if(root.left == null && root.right != null){

                    root = root.right;

                }else{

                    //被删除的节点含有两个子节点

                    Node newRoot = root.left;

                    while (newRoot.left != null){

                        newRoot = newRoot.left;//找到左子树的最大节点

                    }

                    root.element = newRoot.element;

                    root.left = remove(root.element,root.left);

                }

            }

        }else if(compare > 0){

            if(root.left != null){

                root.left = remove(name,root.left);

            }else{

                return null;

            }

        }else{

            if(root.right != null){

                root.right = remove(name,root.right);

            }else{

                return null;

            }

        }

        return root;

    }

    public String toString(){

        //中序遍历就可以输出树中节点的顺序

        return toString(root);

    }

    private String toString(Node n){

        String result = "";

        if(n != null){

            if(n.left != null){

                result += toString(n.left);

            }

            result += n.element + " ";

            if(n.right != null){

                result += toString(n.right);

            }

        }

        return result;

    }

}

Node 和 辅助类 Name的相关实现:

class Node{
    public Name element;
    public Node left;
    public Node right;
    public int frequency = 1;
     
    public Node(Name n){
        this.element=n;
    }
}
 
class Name implements Comparable<Name>{
    private String firstName;
    private String lastName;
     
    public Name(String firstName,String lastName){
        this.firstName=firstName;
        this.lastName=lastName;
    }
     
    public int compareTo(Name n) {
        int result = this.firstName.compareTo(n.firstName);
        return result==0?this.lastName.compareTo(n.lastName):result;
    }
     
    public String toString(){
        return firstName + "-" +lastName;
    }
}

BST的 前序 ,中序 ,后续,层序的遍历方式都在之前的二叉树中有对应的实现

详情请看二叉树初探

功能测试:

public static void main(String[] args){
        //System.out.println("sunlunqian");
        Node root = new Node(new Name("sun","lunqian5"));
        BinarySearchTree bst =new BinarySearchTree(root);
        bst.insert(new Name("sun","lunqian3"));
        bst.insert(new Name("sun","lunqian7"));
        bst.insert(new Name("sun","lunqian2"));
        bst.insert(new Name("sun","lunqian4"));
        bst.insert(new Name("sun","lunqian6"));
        bst.insert(new Name("sun","8"));
        System.out.println(bst);
        bst.remove(new Name("sun","lunqian2"));
        System.out.println(bst);
        bst.remove(new Name("sun","lunqian7"));
        System.out.println(bst);
}

结果输出:

sun-lunqian2 sun-lunqian3 sun-lunqian4 sun-lunqian5 sun-lunqian6 sun-lunqian7 sun-lunqian8 
sun-lunqian3 sun-lunqian4 sun-lunqian5 sun-lunqian6 sun-lunqian7 sun-lunqian8 
sun-lunqian3 sun-lunqian4 sun-lunqian5 sun-lunqian6 sun-lunqian8

相关文章

  • 二叉树系列之BST

    什么是BST? 1. 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值; 2. 若它的右子树不空,则右...

  • Swift实现搜索二叉树(BST)

    Swift实现搜索二叉树(BST) 二叉搜索树(BST)关于索索二叉树这里有详细的教程,下面我们主要针对二叉树的一...

  • Validate Binary Search Tree

    medium Question 判断一个二叉树是否为,二叉搜索树(BST) Notes BST的特点: 节点的左支...

  • 二叉搜索树

    二叉搜索树BST(BinarySearchTree) BST是一棵二叉树有着如下特点: 所有小于父节点的节点都在左...

  • 23-红黑树

    1.二叉搜索树(BST)继承二叉树(BinaryTree) 2.平衡二叉搜索树(BBST)继承二叉搜索树(BST)...

  • 1.路径之和 2.最近公共祖先 3.是否后序bst 4.二叉树转

    3.是否是bst的后续便利 4.二叉树转链表 5.bst转双向链表 6.第k小的元素 7.序列化8.删除bst一个点

  • 20-二叉树和二叉搜索树代码重构

    1.二叉树(BinaryTree)代码 2.二叉搜索树(BST)代码

  • 数据结构 - 红黑树

    BST 二叉查找树(Binary Search Tree,简称BST)是一棵二叉树,它的左子节点的值比父节点的值要...

  • 红黑树学习及Java实现

    BST 二叉查找树(Binary Search Tree,简称BST)是一棵二叉树,它的左子节点的值比父节点的值要...

  • Leetcode.98.Validate Binary Sear

    题目 判断一个树是否是搜索二叉树(BST). BST满足以下条件:所有左子节点小于父节点, 所有右子节点大于父节点...

网友评论

      本文标题:二叉树系列之BST

      本文链接:https://www.haomeiwen.com/subject/wzhekqtx.html