美文网首页
做图工具pyecharts

做图工具pyecharts

作者: xieyan0811 | 来源:发表于2018-12-27 20:10 被阅读91次

    1. 说明

     上次分享了Flask+Dash做图,WXXCX师兄给我留言说:感觉dash不如pyecharts好用,于是我学习了一下pyecharts。

     ECharts,缩写来自Enterprise Charts,商业级数据图表,一个纯Javascript的图表库,可以流畅的运行在PC和移动设备上,兼容当前绝大部分浏览器(IE6/7/8/9/10/11,chrome,firefox,Safari等)。Pyecharts是python版本的echarts,与Dash相比,我个人更喜欢它的图片配色;在使用上它相似于matplotlib,不需要像Dash一样再去熟悉新的API和callback的逻辑;最喜欢的地方在于notebook可以调,flask也可以调,调试时和显示在网页上的图完全一样;它还支持地图显示,以及雷达图等等(Dash是否支持我没试过)。果然更加好用,整理如下。

    2. 准备数据

    import pyecharts
    
    attr = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
    v1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
    v2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
    

    3. 柱图

    bar = pyecharts.Bar("Title1", "Title2")
    bar.add("v1", attr, v1, mark_line=["average"], mark_point=["max", "min"])
    bar.add("v2", attr, v2, mark_line=["average"], mark_point=["max", "min"])
    bar.render('test.html')
    bar
    
    image.png

    4. 直方图

    bar = pyecharts.Bar('Title1', 'Title2')
    bar.add(name = 'v1', x_axis = attr, y_axis = v1, bar_category_gap = 0)
    bar.render('test.html')
    bar
    

    5. 堆叠柱图

    bar = pyecharts.Bar("Title1", "Title2") 
    bar.add('v1',attr,v1,is_stack = True) # is_stack = True才表示堆叠在一起 
    bar.add('v2',attr,v2,is_stack = True) 
    bar.render('test.html') 
    bar
    

    6. 散点图

    scatter = pyecharts.Scatter('Title1', 'Title2')
    x = [i for i in range(0, len(attr))]
    scatter.add("v1", x, v1)
    scatter.add("v2", x, v2)
    scatter.render('test.html')
    scatter
    

    7. 特效散点图

    es = pyecharts.EffectScatter("Title1", "Title2")
    es.add("v1", range(0, len(attr)), v1, legend_pos='center', 
           effect_period=3, effect_scale=3.5, symbol='pin', is_label_show=True)
    es.render("test.html")
    es
    

    8. 折线图

    line = pyecharts.Line("Title1", "Title2")
    line.add("v1", attr, v1, mark_point=['average'])
    line.add("v2", attr, v2, mark_line=['average'], is_smooth=True)
    line.render('test.html')
    line
    

    9. 饼图

    pie = pyecharts.Pie("Title1", "Title2")
    pie.add('v1', attr, v1, is_label_show=True, legend_pos='right',
            label_text_color=None, legend_orient='vertical', radius=[30, 75])
    pie.render('test.html')
    pie
    

    10. 箱图

    boxplot = pyecharts.Boxplot('Title1', 'Title2')
    x_axis = ['v1','v2']
    y_axis = [v1, v2]
    yaxis = boxplot.prepare_data(y_axis)
    boxplot.add("value", x_axis, y_axis)
    boxplot.render('test.html')
    boxplot
    

    11. 多种类型图叠加

    bar = pyecharts.Bar('Title1', 'Title2') 
    bar.add('v1',attr,v1) 
    line = pyecharts.Line() 
    line.add('v2',attr,v2) 
    overlop = pyecharts.Overlap() 
    overlop.add(bar) 
    overlop.add(line) 
    overlop.render('test.html')
    overlop
    

    12. 在网页中显示图表

     与flask框架结合,pythechart将图存成网页,再用flask显示该网页,注意运行前先建立templates目录,flask默认从该目录读取网页。如果运行以下程序没有问题,则在浏览器打开 http://localhost:9993 即可看到图片。

    from flask import Flask
    from sklearn.externals import joblib
    from flask import Flask,render_template,url_for
    import pyecharts
    
    server = Flask(__name__)
    
    def render_test_1():
        attr = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
        v1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
        v2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
        line = pyecharts.Line("Title1", "Title2")
        line.add("v1", attr, v1, mark_point=['average'])
        line.add("v2", attr, v2, mark_line=['average'], is_smooth=True)
        line.render('templates/bar01.html')
    
    @server.route('/')
    def do_main():
        render_test_1()
        return render_template('bar01.html')
    
    if __name__ == '__main__':
        server.run(debug=True, port=9993, host="0.0.0.0")
    

    相关文章

      网友评论

          本文标题:做图工具pyecharts

          本文链接:https://www.haomeiwen.com/subject/xaudlqtx.html