美文网首页
运用measure.regionprops

运用measure.regionprops

作者: changgg | 来源:发表于2020-02-14 17:32 被阅读0次

    import cv2
    import numpy as np
    from skimage.measure import label,regionprops
    import math

    def detection(c):
    perimeter = cv2.arcLength(c, True)
    approximate = cv2.approxPolyDP(c, 0.04*perimeter, True)
    return approximate

    def hough_detection(img):
    img = img.astype(np.uint8)
    gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    _, thre_img = cv2.threshold(gray_img, 253, 255, cv2.THRESH_BINARY_INV)
    circleDetect2 = cv2.HoughCircles(gray_img, cv2.HOUGH_GRADIENT, 1, 100, param1=40, param2=15, minRadius=30,
    maxRadius=100)
    circles = circleDetect2[0, :, :]
    for i in circles[:]:
    cv2.circle(img, (i[0], i[1]), i[2], (255, 0, 0), 2)
    # cv2.circle(img, (i[0], i[1]), 1, (255, 0, 0), 2)
    # cv2.imwrite('cleaning.png', img)
    return img

    def find_contours(img):
    img = img.astype(np.uint8)
    gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    result_img = gray_img.copy()
    crop_img = np.zeros([gray_img.shape[0], gray_img.shape[1]], np.uint8)
    # gray_img = cv2.blur(gray_img, (3, 3))
    _, thre_img = cv2.threshold(gray_img, 210, 255, cv2.THRESH_BINARY_INV)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    thre_img = cv2.morphologyEx(thre_img, cv2.MORPH_OPEN, kernel)
    im_floodfill = thre_img.copy()

    # Mask used to flood filling.
    # Notice the size needs to be 2 pixels than the image.
    h, w = thre_img.shape[:2]
    mask = np.zeros((h + 2, w + 2), np.uint8)
    
    # Floodfill from point (0, 0)
    cv2.floodFill(im_floodfill, mask, (0, 0), 255);
    
    # Invert floodfilled image
    im_floodfill_inv = cv2.bitwise_not(im_floodfill)
    im_out = thre_img | im_floodfill_inv
    #_, contours, hierachy = cv2.findContours(thre_img(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    '''contours, hierachy = cv2.findContours(thre_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    contours = sorted(contours, key=cv2.contourArea, reverse=True)
    # img = hough_detection(img)
    for idx, cnt in enumerate(contours):
        M = cv2.moments(cnt) #像像矩
        cnt_area = cv2.contourArea(cnt)  #廓廓积积
        (x, y), radius = cv2.minEnclosingCircle(cnt)  #最小外接圆
        circle_area = np.pi * radius * radius
        ratio = cnt_area / circle_area
        if ratio >= 0.7:
            cnt = cnt.reshape(-1, 2)
            min = np.min(cnt[:, 1])
            max = np.max(cnt[:, 1])
            for y in range(min+1, max):
                indices = np.argwhere(cnt[:, 1] == y)
                indices = indices.reshape(-1)
                contour = cnt[indices]
                index = np.argsort(contour[:, 0])
                x_min = np.min(contour[:, 0])
                x_max = np.max(contour[:, 0])
                for x in range(x_min, x_max+1):
                    result_img[y, x] = result_img[y, x] + (255 - gray_img[y, x])
        (x, y, radius) = np.int0((x, y, radius))  # 圆心和半径取整
        cv2.circle(img, (x, y), radius, (0, 0, 255), 2)'''
    label_img = label(im_out, connectivity=2)
    props = regionprops(label_img)
    ind=[]
    area=[]
    for idx, prop in enumerate(props):
        # for prop in props:
        #ind = []
        p = prop.area
        per = prop.perimeter
        #coo=prop.coords
        roundness = 4 * math.pi * p / (per * per)
        if roundness >= 0.6 and p>5000:
    
            ind.append(idx)
    
        area.append(p)
    print(area)
    for i in range(len(ind)):
    
      coo=props[ind[i]].coords
      y=coo[:,1]
      x=coo[:,0]
    
      for j in range(len(coo)):
        im_out[x[j]][y[j]]=0
    np.savetxt('new.csv', coo, delimiter=',')
    
    #print(coo)
    #thre_img[]
        #result_img=np.where(a > 0, a, 0)
        #if roundness >= 0.7:
            #thre_img[coo]=0
    cv2.imwrite('RemoveResult.PNG', im_out)
    cv2.imwrite('contours.png', img)
    

    if name == 'main':
    img = cv2.imread('./image/13-338~A.004.A.TIF')
    find_contours(img)

    https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.regionprops

    相关文章

      网友评论

          本文标题:运用measure.regionprops

          本文链接:https://www.haomeiwen.com/subject/xbdjfhtx.html