美文网首页开源
一口气说出 4种 “附近的人” 实现方式,面试官笑了

一口气说出 4种 “附近的人” 实现方式,面试官笑了

作者: 码农小光 | 来源:发表于2020-08-12 15:26 被阅读0次

    来自公众号:程序员内点事
    作者:程序员内点事

    引言

    昨天一位公众号粉丝和我讨论了一道面试题,个人觉得比较有意义,这里整理了一下分享给大家,愿小伙伴们面试路上少踩坑。面试题目比较简单:“让你实现一个附近的人功能,你有什么方案?”,这道题其实主要还是考察大家对于技术的广度,本文介绍几种方案,给大家一点思路,避免在面试过程中语塞而影响面试结果,如有不严谨之处,还望亲人们温柔指正!

    “附近的人” 功能生活中是比较常用的,像外卖app附近的餐厅,共享单车app里附近的车辆。既然常用面试被问的概率就很大,所以下边依次来分析基于mysql数据库RedisMongoDB实现的 “附近的人” 功能。

    image

    科普:世界上标识一个位置,通用的做法就使用经、纬度。经度的范围在 (-180, 180],纬度的范围 在(-90, 90],纬度正负以赤道为界,北正南负,经度正负以本初子午线 (英国格林尼治天文台) 为界,东正西负。比如:望京摩托罗拉大厦的经、纬度(116.49141,40.01229)全是正数,就是因为我国位于东北半球。

    一、“附近的人”原理

    “附近的人” 也就是常说的 LBS(Location Based Services,基于位置服务),它围绕用户当前地理位置数据而展开的服务,为用户提供精准的增值服务。

    “附近的人” 核心思想如下:

    1. 以 “我” 为中心,搜索附近的用户

    2. 以 “我” 当前的地理位置为准,计算出别人和 “我” 之间的距离

    3. 按 “我” 与别人距离的远近排序,筛选出离我最近的用户或者商店等

      image

    二、什么是GeoHash算法?

    在说 “附近的人” 功能的具体实现之前,先来认识一下GeoHash 算法,因为后边会一直和它打交道。定位一个位置最好的办法就是用经、纬度标识,但经、纬度它是二维的,在进行位置计算的时候还是很麻烦,如果能通过某种方法将二维的经、纬度数据转换成一维的数据,那么比较起来就要容易的多,因此GeoHash算法应运而生。

    GeoHash算法将二维的经、纬度转换成一个字符串,例如:下图中9个GeoHash字符串代表了9个区域,每一个字符串代表了一矩形区域。而这个矩形区域内其他的点(经、纬度)都用同一个GeoHash字符串表示。

    image

    比如WX4ER区域内的用户搜索附近的餐厅数据,由于这区域内用户的GeoHash字符串都是WX4ER,故可以把WX4ER当作key,餐厅信息作为value进行缓存;而如果不使用GeoHash算法,区域内的用户请求餐厅数据,用户传来的经、纬度都是不同的,这样缓存不仅麻烦且数据量巨大。

    GeoHash字符串越长,表示的位置越精确,字符串长度越长代表在距离上的误差越小。下图geohash码精度表:

    geohash码长度 宽度 高度
    1 5,009.4km 4,992.6km
    2 1,252.3km 624.1km
    3 156.5km 156km
    4 39.1km 19.5km
    5 4.9km 4.9km
    6 1.2km 609.4m
    7 152.9m 152.4m
    8 38.2m 19m
    9 4.8m 4.8m
    10 1.2m 59.5cm
    11 14.9cm 14.9cm
    12 3.7cm 1.9cm

    而且字符串越相似表示距离越相近,字符串前缀匹配越多的距离越近。比如:下边的经、纬度就代表了三家距离相近的餐厅。

    商户 经纬度 Geohash字符串
    串串香 116.402843,39.999375 wx4er9v
    火锅 116.3967,39.99932 wx4ertk
    烤肉 116.40382,39.918118 wx4erfe

    让大家简单了解什么是GeoHash算法,方便后边内容展开,GeoHash算法内容比较高深,感兴趣的小伙伴自行深耕一下,这里不占用过多篇幅(其实是我懂得太肤浅,哭唧唧~)。

    三、基于Mysql

    此种方式是纯基于mysql实现的,未使用GeoHash算法。

    1、设计思路

    以用户为中心,假设给定一个500米的距离作为半径画一个圆,这个圆型区域内的所有用户就是符合用户要求的 “附近的人”。但有一个问题是圆形有弧度啊,直接搜索圆形区域难度太大,根本无法用经、纬度直接搜索。

    但如果在圆形外套上一个正方形,通过获取用户经、纬度的最大最小值(经、纬度 + 距离),再根据最大最小值作为筛选条件,就很容易将正方形内的用户信息搜索出来。

    那么问题又来了,多出来一些面积肿么办?

    我们来分析一下,多出来的这部分区域内的用户,到圆点的距离一定比圆的半径要大,那么我们就计算用户中心点与正方形内所有用户的距离,筛选出所有距离小于等于半径的用户,圆形区域内的所用户即符合要求的“附近的人”

    image
    2、利弊分析

    纯基于 mysql 实现 “附近的人”,优点显而易见就是简单,只要建一张表存下用户的经、纬度信息即可。缺点也很明显,需要大量的计算两个点之间的距离,非常影响性能。

    3、实现

    创建一个简单的表用来存放用户的经、纬度属性。

    1CREATE TABLE `nearby_user` (
    2  `id` int(11) NOT NULL AUTO_INCREMENT,
    3  `name` varchar(255) DEFAULT NULL COMMENT '名称',
    4  `longitude` double DEFAULT NULL COMMENT '经度',
    5  `latitude` double DEFAULT NULL COMMENT '纬度',
    6  `create_time` datetime DEFAULT NULL ON UPDATE CURRENT_TIMESTAMP COMMENT '创建时间',
    7  PRIMARY KEY (`id`)
    8) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
    

    计算两个点之间的距离,用了一个三方的类库,毕竟自己造的轮子不是特别圆,还有可能是方的,啊哈哈哈~

    1<dependency>
    2     <groupId>com.spatial4j</groupId>
    3     <artifactId>spatial4j</artifactId>
    4     <version>0.5</version>
    5</dependency>
    

    获取到外接正方形后,以正方形的最大最小经、纬度值搜索正方形区域内的用户,再剔除超过指定距离的用户,就是最终的附近的人

     1    private SpatialContext spatialContext = SpatialContext.GEO;    
     2
     3    /**
     4     * 获取附近 x 米的人
     5     *
     6     * @param distance 搜索距离范围 单位km
     7     * @param userLng  当前用户的经度
     8     * @param userLat  当前用户的纬度
     9     */
    10    @GetMapping("/nearby")
    11    public String nearBySearch(@RequestParam("distance") double distance,
    12                               @RequestParam("userLng") double userLng,
    13                               @RequestParam("userLat") double userLat) {
    14        //1.获取外接正方形
    15        Rectangle rectangle = getRectangle(distance, userLng, userLat);
    16        //2.获取位置在正方形内的所有用户
    17        List<User> users = userMapper.selectUser(rectangle.getMinX(), rectangle.getMaxX(), rectangle.getMinY(), rectangle.getMaxY());
    18        //3.剔除半径超过指定距离的多余用户
    19        users = users.stream()
    20            .filter(a -> getDistance(a.getLongitude(), a.getLatitude(), userLng, userLat) <= distance)
    21            .collect(Collectors.toList());
    22        return JSON.toJSONString(users);
    23    }
    24
    25    private Rectangle getRectangle(double distance, double userLng, double userLat) {
    26        return spatialContext.getDistCalc()
    27            .calcBoxByDistFromPt(spatialContext.makePoint(userLng, userLat), 
    28                                 distance * DistanceUtils.KM_TO_DEG, spatialContext, null);
    29    }
    

    由于用户间距离的排序是在业务代码中实现的,可以看到SQL语句也非常的简单。

    1    <select id="selectUser" resultMap="BaseResultMap">
    2        SELECT * FROM user
    3        WHERE 1=1
    4        and (longitude BETWEEN ${minlng} AND ${maxlng})
    5        and (latitude BETWEEN ${minlat} AND ${maxlat})
    6    </select>
    

    四、Mysql + GeoHash

    1、设计思路

    这种方式的设计思路更简单,在存用户位置信息时,根据用户经、纬度属性计算出相应的geohash字符串。注意:在计算geohash字符串时,需要指定geohash字符串的精度,也就是geohash字符串的长度,参考上边的****geohash精度表

    当需要获取附近的人,只需用当前用户geohash字符串,数据库通过WHERE geohash Like 'geocode%' 来查询geohash字符串相似的用户,然后计算当前用户与搜索出的用户距离,筛选出所有距离小于等于指定距离(附近500米)的,即附近的人

    2、利弊分析

    利用GeoHash算法实现“附近的人”有一个问题,由于geohash算法将地图分为一个个矩形,对每个矩形进行编码,得到geohash字符串。可我当前的点与邻近的点很近,但恰好我们分别在两个区域,明明就在眼前的点偏偏搜不到,实实在在的灯下黑。

    如何解决这一问题?

    为了避免类似邻近两点在不同区域内,我们就需要同时获取当前点(WX4G0)所在区域附近 8个区域的geohash码,一并进行筛选比较。

    image
    3、实现

    同样要设计一张表存用户的经、纬度信息,但区别是要多一个geo_code字段,存放geohash字符串,此字段通过用户经、纬度属性计算出。使用频繁的字段建议加上索引。

     1CREATE TABLE `nearby_user_geohash` (
     2  `id` int(11) NOT NULL AUTO_INCREMENT,
     3  `name` varchar(255) DEFAULT NULL COMMENT '名称',
     4  `longitude` double DEFAULT NULL COMMENT '经度',
     5  `latitude` double DEFAULT NULL COMMENT '纬度',
     6  `geo_code` varchar(64) DEFAULT NULL COMMENT '经纬度所计算的geohash码',
     7  `create_time` datetime DEFAULT NULL ON UPDATE CURRENT_TIMESTAMP COMMENT '创建时间',
     8  PRIMARY KEY (`id`),
     9  KEY `index_geo_hash` (`geo_code`)
    10) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
    

    首先根据用户经、纬度信息,在指定精度后计算用户坐标的geoHash码,再获取到用户周边8个方位的geoHash码在数据库中搜索用户,最后过滤掉超出给定距离(500米内)的用户。

     1 private SpatialContext spatialContext = SpatialContext.GEO;
     2
     3    /***
     4     * 添加用户
     5     * @return
     6     */
     7    @PostMapping("/addUser")
     8    public boolean add(@RequestBody UserGeohash user) {
     9        //默认精度12位
    10        String geoHashCode = GeohashUtils.encodeLatLon(user.getLatitude(),user.getLongitude());
    11        return userGeohashService.save(user.setGeoCode(geoHashCode).setCreateTime(LocalDateTime.now()));
    12    }
    13
    14
    15/**
    16     * 获取附近指定范围的人
    17     *
    18     * @param distance 距离范围(附近多远的用户) 单位km
    19     * @param len      geoHash的精度(几位的字符串)
    20     * @param userLng  当前用户的经度
    21     * @param userLat  当前用户的纬度
    22     * @return json
    23     */
    24    @GetMapping("/nearby")
    25    public String nearBySearch(@RequestParam("distance") double distance,
    26                               @RequestParam("len") int len,
    27                               @RequestParam("userLng") double userLng,
    28                               @RequestParam("userLat") double userLat) {
    29
    30
    31        //1.根据要求的范围,确定geoHash码的精度,获取到当前用户坐标的geoHash码
    32        GeoHash geoHash = GeoHash.withCharacterPrecision(userLat, userLng, len);
    33        //2.获取到用户周边8个方位的geoHash码
    34        GeoHash[] adjacent = geoHash.getAdjacent();
    35
    36        QueryWrapper<UserGeohash> queryWrapper = new QueryWrapper<UserGeohash>()
    37            .likeRight("geo_code",geoHash.toBase32());
    38        Stream.of(adjacent).forEach(a -> queryWrapper.or().likeRight("geo_code",a.toBase32()));
    39
    40        //3.匹配指定精度的geoHash码
    41        List<UserGeohash> users = userGeohashService.list(queryWrapper);
    42        //4.过滤超出距离的
    43        users = users.stream()
    44                .filter(a ->getDistance(a.getLongitude(),a.getLatitude(),userLng,userLat)<= distance)
    45                .collect(Collectors.toList());
    46        return JSON.toJSONString(users);
    47    }
    48
    49
    50    /***
    51     * 球面中,两点间的距离
    52     * @param longitude 经度1
    53     * @param latitude  纬度1
    54     * @param userLng   经度2
    55     * @param userLat   纬度2
    56     * @return 返回距离,单位km
    57     */
    58    private double getDistance(Double longitude, Double latitude, double userLng, double userLat) {
    59        return spatialContext.calcDistance(spatialContext.makePoint(userLng, userLat),
    60                spatialContext.makePoint(longitude, latitude)) * DistanceUtils.DEG_TO_KM;
    61    }
    

    五、Redis + GeoHash

    Redis 3.2版本以后,基于geohash和数据结构Zset提供了地理位置相关功能。通过上边两种mysql的实现方式发现,附近的人功能是明显的读多写少场景,所以用redis性能更会有很大的提升。

    1、设计思路

    redis 实现附近的人功能主要通过Geo模块的六个命令。

    • GEOADD:将给定的位置对象(纬度、经度、名字)添加到指定的key;

    • GEOPOS:从key里面返回所有给定位置对象的位置(经度和纬度);

    • GEODIST:返回两个给定位置之间的距离;

    • GEOHASH:返回一个或多个位置对象的Geohash表示;

    • GEORADIUS:以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象;

    • GEORADIUSBYMEMBER:以给定的位置对象为中心,返回与其距离不超过给定最大距离的所有位置对象。

    GEOADD 命令和GEORADIUS 命令简单举例:

    1GEOADD key longitude latitude member [longitude latitude member ...]
    

    其中,key为集合名称,member为该经纬度所对应的对象。

    GEOADD 添加多个商户“火锅店”位置信息:

    1GEOADD hotel 119.98866180732716    30.27465803229662 火锅店
    

    GEORADIUS 根据给定的经纬度为中心,获取目标集合中与中心的距离不超过给定最大距离(500米内)的所有位置对象,也就是“附近的人”

    1GEORADIUS key longitude latitude radius m|km|ft|mi [WITHCOORD] [WITHDIST] [WITHHASH] [ASC|DESC] [COUNT count] [STORE key] [STORedisT key]
    

    范围单位:m | km | ft | mi --> 米 | 千米 | 英尺 | 英里。

    • WITHDIST:在返回位置对象的同时,将位置对象与中心之间的距离也一并返回。距离的单位和用户给定的范围单位保持一致。

    • WITHCOORD:将位置对象的经度和维度也一并返回。

    • WITHHASH:以 52 位有符号整数的形式,返回位置对象经过原始 geohash 编码的有序集合分值。这个选项主要用于底层应用或者调试,实际中的作用并不大。

    • ASC | DESC:从近到远返回位置对象元素 | 从远到近返回位置对象元素。

    • COUNT count:选取前N个匹配位置对象元素。(不设置则返回所有元素)

    • STORE key:将返回结果的地理位置信息保存到指定key。

    • STORedisT key:将返回结果离中心点的距离保存到指定key。

    例如下边命令:获取当前位置周边500米内的所有饭店。

    1GEORADIUS hotel 119.98866180732716    30.27465803229662 500 m WITHCOORD
    

    Redis内部使用有序集合(zset)保存用户的位置信息,zset中每个元素都是一个带位置的对象,元素的score值为通过经、纬度计算出的52位geohash值。

    2、利弊分析

    redis实现附近的人效率比较高,集成也比较简单,而且还支持对距离排序。不过,结果存在一定的误差,要想让结果更加精确,还需要手动将用户中心位置与其他用户位置计算距离后,再一次进行筛选。

    3、实现

    以下就是Java redis实现版本,代码非常的简洁。

     1 @Autowired
     2    private RedisTemplate<String, Object> redisTemplate;
     3
     4    //GEO相关命令用到的KEY
     5    private final static String KEY = "user_info";
     6
     7    public boolean save(User user) {
     8        Long flag = redisTemplate.opsForGeo().add(KEY, new RedisGeoCommands.GeoLocation<>(
     9                user.getName(), 
    10                new Point(user.getLongitude(), user.getLatitude()))
    11        );
    12        return flag != null && flag > 0;
    13    }
    14
    15    /**
    16     * 根据当前位置获取附近指定范围内的用户
    17     * @param distance 指定范围 单位km ,可根据{@link org.springframework.data.geo.Metrics} 进行设置
    18     * @param userLng 用户经度
    19     * @param userLat 用户纬度
    20     * @return
    21     */
    22    public String nearBySearch(double distance, double userLng, double userLat) {
    23        List<User> users = new ArrayList<>();
    24        // 1.GEORADIUS获取附近范围内的信息
    25        GeoResults<RedisGeoCommands.GeoLocation<Object>> reslut = 
    26            redisTemplate.opsForGeo().radius(KEY, 
    27                        new Circle(new Point(userLng, userLat), new Distance(distance, Metrics.KILOMETERS)),
    28                        RedisGeoCommands.GeoRadiusCommandArgs.newGeoRadiusArgs()
    29                                .includeDistance()
    30                                .includeCoordinates().sortAscending());
    31        //2.收集信息,存入list
    32        List<GeoResult<RedisGeoCommands.GeoLocation<Object>>> content = reslut.getContent();
    33        //3.过滤掉超过距离的数据
    34        content.forEach(a-> users.add(
    35                new User().setDistance(a.getDistance().getValue())
    36                .setLatitude(a.getContent().getPoint().getX())
    37                .setLongitude(a.getContent().getPoint().getY())));
    38        return JSON.toJSONString(users);
    39    }
    

    六、MongoDB + 2d索引

    1、设计思路

    MongoDB实现附近的人,主要是通过它的两种地理空间索引 2dsphere2d。两种索引的底层依然是基于Geohash来进行构建的。但与国际通用的Geohash还有一些不同,具体参考官方文档。

    2dsphere 索引仅支持球形表面的几何形状查询。

    2d 索引支持平面几何形状和一些球形查询。虽然2d 索引支持某些球形查询,但 2d 索引对这些球形查询时,可能会出错。所以球形查询尽量选择 2dsphere索引。

    尽管两种索引的方式不同,但只要坐标跨度不太大,这两个索引计算出的距离相差几乎可以忽略不计。

    2、实现

    首先插入一批位置数据到MongoDBcollection为起名 hotel,相当于MySQL的表名。两个字段name名称,location 为经、纬度数据对。

     1db.hotel.insertMany([
     2 {'name':'hotel1',  location:[115.993121,28.676436]},
     3 {'name':'hotel2',  location:[116.000093,28.679402]},
     4 {'name':'hotel3',  location:[115.999967,28.679743]},
     5 {'name':'hotel4',  location:[115.995593,28.681632]},
     6 {'name':'hotel5',  location:[115.975543,28.679509]},
     7 {'name':'hotel6',  location:[115.968428,28.669368]},
     8 {'name':'hotel7',  location:[116.035262,28.677037]},
     9 {'name':'hotel8',  location:[116.024770,28.68667]},
    10 {'name':'hotel9',  location:[116.002384,28.683865]},
    11 {'name':'hotel10', location:[116.000821,28.68129]},
    12])
    

    接下来我们给 location 字段创建一个2d索引,索引的精度通过bits来指定,bits越大,索引的精度就越高。

    1db.coll.createIndex({'location':"2d"}, {"bits":11111})
    

    geoNear命令测试一下, near 当前坐标(经、纬度),spherical 是否计算球面距离,distanceMultiplier地球半径,单位是米,默认6378137, maxDistance 过滤条件(指定距离内的用户),开启弧度需除distanceMultiplierdistanceField 计算出的两点间距离,字段别名(随意取名)。

    1db.hotel.aggregate({
    2    $geoNear:{
    3        near: [115.999567,28.681813], // 当前坐标
    4        spherical: true, // 计算球面距离
    5        distanceMultiplier: 6378137, // 地球半径,单位是米,那么的除的记录也是米
    6        maxDistance: 2000/6378137, // 过滤条件2000米内,需要弧度
    7        distanceField: "distance" // 距离字段别名
    8    }
    9})
    

    看到结果中有符合条件的数据,还多出一个字段distance 刚才设置的别名,代表两点间的距离。

    1{ "_id" : ObjectId("5e96a5c91b8d4ce765381e58"), "name" : "hotel10", "location" : [ 116.000821, 28.68129 ], "distance" : 135.60095397487655 }
    2{ "_id" : ObjectId("5e96a5c91b8d4ce765381e51"), "name" : "hotel3", "location" : [ 115.999967, 28.679743 ], "distance" : 233.71915803517447 }
    3{ "_id" : ObjectId("5e96a5c91b8d4ce765381e50"), "name" : "hotel2", "location" : [ 116.000093, 28.679402 ], "distance" : 273.26317035334176 }
    4{ "_id" : ObjectId("5e96a5c91b8d4ce765381e57"), "name" : "hotel9", "location" : [ 116.002384, 28.683865 ], "distance" : 357.5791936927476 }
    5{ "_id" : ObjectId("5e96a5c91b8d4ce765381e52"), "name" : "hotel4", "location" : [ 115.995593, 28.681632 ], "distance" : 388.62555058249967 }
    6{ "_id" : ObjectId("5e96a5c91b8d4ce765381e4f"), "name" : "hotel1", "location" : [ 115.993121, 28.676436 ], "distance" : 868.6740526419927 }
    

    总结

    本文重点并不是在具体实现,旨在给大家提供一些设计思路,面试中可能你对某一项技术了解的并不深入,但如果你的知识面宽,可以从多方面说出多种设计的思路,能够侃侃而谈,那么会给面试官极大的好感度,拿到offer的概率就会高很多。而且“附近的人” 功能使用的场景比较多,尤其是像电商平台应用更为广泛,所以想要进大厂的同学,这类的知识点还是应该有所了解的。


    代码实现借鉴了一位大佬的开源项目,这里有前三种实现方式的demo,感兴趣的小伙伴可以学习一下,GitHub地址:https://github.com/larscheng/larscheng-learning-demo/tree/master/NearbySearch,。

    相关文章

      网友评论

        本文标题:一口气说出 4种 “附近的人” 实现方式,面试官笑了

        本文链接:https://www.haomeiwen.com/subject/xbhydktx.html