美文网首页
flink 学习笔记 — 自定义 Sink 函数

flink 学习笔记 — 自定义 Sink 函数

作者: 飞不高的老鸟 | 来源:发表于2019-11-13 20:12 被阅读0次

    flink Sink简介

    • flink 中有两个重要的概念,Source 和 Sink ,Source 决定了我们的数据从哪里产生,而 Sink 决定了数据将要去到什么地方。
    • flink 自带有丰富的 Sink,比如:kafka、csv 文件、ES、Socket 等等。
    • 当我们想要使用当前并未实现的 Sink 函数时,可以进行自定义。

    自定义 Sink 函数

    • 这里主要自定义写入 kudu 的 kuduSink。
    • 自定义sink需要我们实现 SinkFunction,或者继承 RichSinkFunction,下面我们阅读源码来对其进行比较:

    SinkFunction 函数,这是一个接口。

    package org.apache.flink.streaming.api.functions.sink;
    
    import org.apache.flink.annotation.Public;
    import org.apache.flink.api.common.functions.Function;
    
    import java.io.Serializable;
    
    /**
     * Interface for implementing user defined sink functionality.
     *
     * @param <IN> Input type parameter.
     */
    @Public
    public interface SinkFunction<IN> extends Function, Serializable {
    
        /**
         * @deprecated Use {@link #invoke(Object, Context)}.
         */
        @Deprecated
        default void invoke(IN value) throws Exception {}
    
        /**
         * Writes the given value to the sink. This function is called for every record.
         *
         * <p>You have to override this method when implementing a {@code SinkFunction}, this is a
         * {@code default} method for backward compatibility with the old-style method only.
         *
         * @param value The input record.
         * @param context Additional context about the input record.
         *
         * @throws Exception This method may throw exceptions. Throwing an exception will cause the operation
         *                   to fail and may trigger recovery.
         */
        default void invoke(IN value, Context context) throws Exception {
            invoke(value);
        }
    
        /**
         * Context that {@link SinkFunction SinkFunctions } can use for getting additional data about
         * an input record.
         *
         * <p>The context is only valid for the duration of a
         * {@link SinkFunction#invoke(Object, Context)} call. Do not store the context and use
         * afterwards!
         *
         * @param <T> The type of elements accepted by the sink.
         */
        @Public // Interface might be extended in the future with additional methods.
        interface Context<T> {
    
            /** Returns the current processing time. */
            long currentProcessingTime();
    
            /** Returns the current event-time watermark. */
            long currentWatermark();
    
            /**
             * Returns the timestamp of the current input record or {@code null} if the element does not
             * have an assigned timestamp.
             */
            Long timestamp();
        }
    }
    

    RichSinkFunction 函数,这个是一个抽象类。

    package org.apache.flink.streaming.api.functions.sink;
    
    import org.apache.flink.annotation.Public;
    import org.apache.flink.api.common.functions.AbstractRichFunction;
    
    /**
     * A {@link org.apache.flink.api.common.functions.RichFunction} version of {@link SinkFunction}.
     */
    @Public
    public abstract class RichSinkFunction<IN> extends AbstractRichFunction implements SinkFunction<IN> {
    
        private static final long serialVersionUID = 1L;
    }
    
    
    • 由源码可以看到,RichSinkFunction 抽象类继承了 SinkFunction 接口,在使用过程中会更加灵活。通常情况下,在自定义 Sink 函数时,是继承 RichSinkFunction 来实现。

    • KuduSink 函数, 继承了 RichSinkFunction,重写了 open、close 和 invoke 方法,在 open 中进行 kudu 相关配置的初始化,在 invoke 中进行数据写入的相关操作,最后在 close 中关掉所有的开关。

    package test;
    
    import org.apache.flink.configuration.Configuration;
    import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
    import org.apache.kudu.Schema;
    import org.apache.kudu.Type;
    import org.apache.kudu.client.*;
    import org.apache.log4j.Logger;
    
    import java.io.ByteArrayOutputStream;
    import java.io.IOException;
    import java.io.ObjectOutputStream;
    import java.util.Map;
    
    public class SinkKudu extends RichSinkFunction<Map<String, Object>> {
    
        private final static Logger logger = Logger.getLogger(SinkKudu.class);
    
        private KuduClient client;
        private KuduTable table;
    
        private String kuduMaster;
        private String tableName;
        private Schema schema;
        private KuduSession kuduSession;
        private ByteArrayOutputStream out;
        private ObjectOutputStream os;
    
    
        public SinkKudu(String kuduMaster, String tableName) {
            this.kuduMaster = kuduMaster;
            this.tableName = tableName;
        }
    
        @Override
        public void open(Configuration parameters) throws Exception {
            out = new ByteArrayOutputStream();
            os = new ObjectOutputStream(out);
            client = new KuduClient.KuduClientBuilder(kuduMaster).build();
            table = client.openTable(tableName);
            schema = table.getSchema();
            kuduSession = client.newSession();
            kuduSession.setFlushMode(SessionConfiguration.FlushMode.AUTO_FLUSH_BACKGROUND);
        }
    
        @Override
        public void invoke(Map<String, Object> map) {
            if (map == null) {
                return;
            }
            try {
                int columnCount = schema.getColumnCount();
                Insert insert = table.newInsert();
                PartialRow row = insert.getRow();
                for (int i = 0; i < columnCount; i++) {
                    Object value = map.get(schema.getColumnByIndex(i).getName());
                    insertData(row, schema.getColumnByIndex(i).getType(), schema.getColumnByIndex(i).getName(), value);
                }
    
                OperationResponse response = kuduSession.apply(insert);
                if (response != null) {
                    logger.error(response.getRowError().toString());
                }
            } catch (Exception e) {
                logger.error(e);
            }
        }
    
        @Override
        public void close() throws Exception {
            try {
                kuduSession.close();
                client.close();
                os.close();
                out.close();
            } catch (Exception e) {
                logger.error(e);
            }
        }
    
        // 插入数据
        private void insertData(PartialRow row, Type type, String columnName, Object value) throws IOException {
    
            try {
                switch (type) {
                    case STRING:
                        row.addString(columnName, value.toString());
                        return;
                    case INT32:
                        row.addInt(columnName, Integer.valueOf(value.toString()));
                        return;
                    case INT64:
                        row.addLong(columnName, Long.valueOf(value.toString()));
                        return;
                    case DOUBLE:
                        row.addDouble(columnName, Double.valueOf(value.toString()));
                        return;
                    case BOOL:
                        row.addBoolean(columnName, (Boolean) value);
                        return;
                    case INT8:
                        row.addByte(columnName, (byte) value);
                        return;
                    case INT16:
                        row.addShort(columnName, (short) value);
                        return;
                    case BINARY:
                        os.writeObject(value);
                        row.addBinary(columnName, out.toByteArray());
                        return;
                    case FLOAT:
                        row.addFloat(columnName, Float.valueOf(String.valueOf(value)));
                        return;
                    default: 
                        throw new UnsupportedOperationException("Unknown type " + type);
                }
            } catch (Exception e) {
                logger.error("数据插入异常", e);
            }
        }
    }
    

    测试样例(这里使用了一个 UserInfo 的 pojo 类,包括 userid、name、age 三个属性,文内省略了)

    package test;
    
    import org.apache.flink.api.common.functions.MapFunction;
    import org.apache.flink.api.java.utils.ParameterTool;
    import org.apache.flink.streaming.api.CheckpointingMode;
    import org.apache.flink.streaming.api.datastream.DataStreamSource;
    import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    
    import java.util.HashMap;
    import java.util.Map;
    
    public class SinkTest {
    
        public static void main(String []args) throws Exception {
    
            // 初始化 flink 执行环境
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            // 生成数据源
            DataStreamSource<UserInfo> dataSource = env.fromElements(new UserInfo("001", "Jack", 18),
                    new UserInfo("002", "Rose", 20),
                    new UserInfo("003", "Cris", 22),
                    new UserInfo("004", "Lily", 19),
                    new UserInfo("005", "Lucy", 21),
                    new UserInfo("006", "Json", 24));
    
            // 转换数据 map
            SingleOutputStreamOperator<Map<String, Object>> mapSource = dataSource.map(new MapFunction<UserInfo, Map<String, Object>>() {
    
                @Override
                public Map<String, Object> map(UserInfo value) throws Exception {
                    Map<String, Object> map = new HashMap<>();
                    map.put("userid", value.userid);
                    map.put("name", value.name);
                    map.put("age", value.age);
                    return map;
                }
            });
    
            // sink 到 kudu
            String kuduMaster = "host";
            String tableInfo = "tablename";
            mapSource.addSink(new SinkKudu(kuduMaster, tableInfo));
            
            env.execute("sink-test");
        }
    }
    
    

    小结

    • 这里自定义 SinkKudu 函数,通过一个简单样例进行测试。当然,这里的 source 可以换成读取 kafka 数据进行流式数据的处理。flink 读取 kafka,然后写入 kudu,是生产中实时 ETL 经常采用的方案。

    相关文章

      网友评论

          本文标题:flink 学习笔记 — 自定义 Sink 函数

          本文链接:https://www.haomeiwen.com/subject/xbmkictx.html