最近终于找到一个好的方法,使用Python的OpenCV模块识别滑动验证码的缺口,可以将滑动验证码中的缺口识别出来了。
<tt-image data-tteditor-tag="tteditorTag" contenteditable="false" class="syl1557470080293 ql-align-center" data-render-status="finished" data-syl-blot="image" style="box-sizing: border-box; cursor: text; text-align: left; color: rgb(34, 34, 34); font-family: "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei", "Helvetica Neue", Arial, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; white-space: pre-wrap; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial; display: block;"> image<input class="pgc-img-caption-ipt" placeholder="图片描述(最多50字)" value="" style="box-sizing: border-box; outline: 0px; color: rgb(102, 102, 102); position: absolute; left: 187.5px; transform: translateX(-50%); padding: 6px 7px; max-width: 100%; width: 375px; text-align: center; cursor: text; font-size: 12px; line-height: 1.5; background-color: rgb(255, 255, 255); background-image: none; border: 0px solid rgb(217, 217, 217); border-radius: 4px; transition: all 0.2s cubic-bezier(0.645, 0.045, 0.355, 1) 0s;"></tt-image>
Python学习交流群:1004391443,这里是python学习者聚集地,有大牛答疑,有资源共享!小编也准备了一份python学习资料,有想学习python编程的,或是转行,或是大学生,还有工作中想提升自己能力的,正在学习的小伙伴欢迎加入学习。
测试使用如下两张图片:
<tt-image data-tteditor-tag="tteditorTag" contenteditable="false" class="syl1557470080299 ql-align-center" data-render-status="finished" data-syl-blot="image" style="box-sizing: border-box; cursor: text; text-align: left; color: rgb(34, 34, 34); font-family: "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei", "Helvetica Neue", Arial, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; white-space: pre-wrap; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial; display: block;"> image<input class="pgc-img-caption-ipt" placeholder="图片描述(最多50字)" value="" style="box-sizing: border-box; outline: 0px; color: rgb(102, 102, 102); position: absolute; left: 187.5px; transform: translateX(-50%); padding: 6px 7px; max-width: 100%; width: 375px; text-align: center; cursor: text; font-size: 12px; line-height: 1.5; background-color: rgb(255, 255, 255); background-image: none; border: 0px solid rgb(217, 217, 217); border-radius: 4px; transition: all 0.2s cubic-bezier(0.645, 0.045, 0.355, 1) 0s;"></tt-image>
target.jpg
<tt-image data-tteditor-tag="tteditorTag" contenteditable="false" class="syl1557470080304 ql-align-center" data-render-status="finished" data-syl-blot="image" style="box-sizing: border-box; cursor: text; text-align: left; color: rgb(34, 34, 34); font-family: "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei", "Helvetica Neue", Arial, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; white-space: pre-wrap; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial; display: block;"> image<input class="pgc-img-caption-ipt" placeholder="图片描述(最多50字)" value="" style="box-sizing: border-box; outline: 0px; color: rgb(102, 102, 102); position: absolute; left: 187.5px; transform: translateX(-50%); padding: 6px 7px; max-width: 100%; width: 375px; text-align: center; cursor: text; font-size: 12px; line-height: 1.5; background-color: rgb(255, 255, 255); background-image: none; border: 0px solid rgb(217, 217, 217); border-radius: 4px; transition: all 0.2s cubic-bezier(0.645, 0.045, 0.355, 1) 0s;"></tt-image>
template.png
现在想要通过“template.png”在“target.jpg”中找到对应的缺口,代码实现如下:
<pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;"># encoding=utf8
import cv2
import numpy as np
def show(name):
cv2.imshow('Show', name)
cv2.waitKey(0)
cv2.destroyAllWindows()
def main():
otemp = 'template.png'
oblk = 'target.jpg'
target = cv2.imread(otemp, 0)
template = cv2.imread(oblk, 0)
w, h = target.shape[::-1]
temp = 'temp.jpg'
targ = 'targ.jpg'
cv2.imwrite(temp, template)
cv2.imwrite(targ, target)
target = cv2.imread(targ)
target = cv2.cvtColor(target, cv2.COLOR_BGR2GRAY)
target = abs(255 - target)
cv2.imwrite(targ, target)
target = cv2.imread(targ)
template = cv2.imread(temp)
result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)
x, y = np.unravel_index(result.argmax(), result.shape)
# 展示圈出来的区域
cv2.rectangle(template, (y, x), (y + w, x + h), (7, 249, 151), 2)
show(template)
if name == 'main':
main()
</pre>
运行结果见本文最上面,通过运行结果可以知道,已经正确的找到了缺口位置。
网友评论