去冗余
pd.drop_duplicates
可以去除重复行,网上讲解很多,
例如https://blog.csdn.net/u010665216/article/details/78559091/
DataFrame.drop_duplicates(subset=None, keep='first', inplace=False)
subset : column label or sequence of labels, optional
用来指定特定的列,默认所有列
keep : {‘first’, ‘last’, False}, default ‘first’
删除重复项并保留第一次出现的项,False表示删除所有重复内容
inplace : boolean, default False
是直接在原来数据上修改还是保留一个副本
实例展示
df
Out[18]:
A B
0 1 a
1 2 b
2 3 b
3 1 c
df.drop_duplicates(subset='A')
Out[19]:
A B
0 1 a
1 2 b
2 3 b
df.drop_duplicates(subset='A',keep="last")
Out[20]:
A B
1 2 b
2 3 b
3 1 c
In[21]: df.drop_duplicates(subset='A',keep=False)
Out[21]:
A B
1 2 b
2 3 b
提取冗余
pd.duplicated
返回布尔值表示重复与否
DataFrame.duplicated(subset=None, keep='first')
subset : column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by default use all of the columns
keep : {‘first’, ‘last’, False}, default ‘first’
first
: Mark duplicates asTrue
except for the first occurrence.last
: Mark duplicates asTrue
except for the last occurrence.False
: Mark all duplicates asTrue
.
例如
In[23]: df.duplicated(subset="B")
Out[23]:
0 False
1 False
2 True
3 False
dtype: bool
提取重复行的话也比较简单
In[24]: df[df.duplicated(subset="B")]
Out[24]:
A B
2 3 b
或者麻烦点,通过index来提取
In[30]: df.drop(df.drop_duplicates('B').index)
Out[30]:
A B
2 3 b
又或者想要提取所有的重复行
In[37]: df[df.duplicated(subset='B',keep=False)]
Out[37]:
A B
1 2 b
2 3 b
网友评论