美文网首页
Spark算子——转换操作

Spark算子——转换操作

作者: _羊羽_ | 来源:发表于2019-08-12 22:11 被阅读0次

概述

每一次转换操作都会产生不同的RDD,供给下一个操作使用。

算子

解决问题其实是将问题的初始化状态,通过一系列的操作Operate对问题的状态进行转换,然后达到完成解决的状态

惰性机制

RDD的转换过程是惰性求值的,也就是,整个转换过程只记录轨迹,并不会发生真正的计算,只有遇到了行动操作时,才会触发真正的计算。

filter(func)

过滤出满足函数func的元素,并返回存入一个新的数据集

    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(List(1,2,3,4,5,6))
    val result = rdd.filter(_%2==0)
    println(result.collect().mkString(","))

map(func)

将每个元素传递到函数func中进行操作,并将结果返回为一个新的数据集。
collect()以数组的形式返回rdd的结果,但列表中每个数乘以2

    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(List(1,2,3,4,5,6))
    val mapResult = rdd.map(_*2)
    println(mapResult.collect().toBuffer)

flatMap(func)

与map相似,但是每个输入元素都可以映射到0或多个输出结果,所以func应该返回一个序列,而不是单一元素

    val conf = new SparkConf().setAppName("RDD").setMaster("local[*]")
    val sc = new SparkContext(conf)
    val arrayRDD: RDD[List[Int]] = sc.makeRDD(Array(List(1,2),List(3,4)))
    val listRDD: RDD[Int] = arrayRDD.flatMap(data=>data)
    listRDD.collect().foreach(println)
    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(Array("a b c","b c d"))
    val result = rdd.flatMap(_.split(" "))
    println(result.collect().mkString(","))

sample

参数1 是否抽出的数据放回
参数2 抽样比例 浮点型
参数3 种子,默认值

    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(1 to 10)
    val result = rdd.sample(false,0.5)
    println(result.collect().mkString(","))

union

求并集

    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd1 = sc.parallelize(List(1,3,4))
    val rdd2 = sc.parallelize(List(2,3,4))
    val result = rdd1.union(rdd2)
    println(result.collect().toBuffer)

intersection

求交集

    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd1 = sc.parallelize(List(1,3,4))
    val rdd2 = sc.parallelize(List(2,3,4))
    val result = rdd1.intersection(rdd2)
    println(result.collect().toBuffer)

distinct

去除重复元素

    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(List(1,3,4,3,5,1))
    val result = rdd.distinct()
    println(result.collect().toBuffer)

groupByKey(func)

应用于(K,V)键值的数据集时,返回一个新的(K,Iterable)形式的数据集

reduceByKey(func)

应用于(K,V)键值对的数据集时,返回一个新的(K,V)形式的数据集,其中每个值是将每个Key传递到函数func中进行聚合后的结果。

scala> val list = List("Hadoop","Spark","Hive","Scala")
list: List[String] = List(Hadoop, Spark, Hive, Scala)

scala> val rdd = sc.parallelize(list)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[36] at parallelize at <console>:26

scala> val mapRDD = rdd.map(word=>(word,1))
mapRDD: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[37] at map at <console>:25

scala> mapRDD.foreach(println)
(Hadoop,1)
(Spark,1)
(Hive,1)
(Scala,1)

相关文章

  • Spark算子——转换操作

    概述 每一次转换操作都会产生不同的RDD,供给下一个操作使用。 算子 解决问题其实是将问题的初始化状态,通过一系列...

  • 【Spark】RDD操作详解1——Transformation和

    Spark算子的作用 下图描述了Spark在运行转换中通过算子对RDD进行转换。 算子是RDD中定义的函数,可以对...

  • Spark 算子- Value Transformation

    Spark算子的作用 Spark的输入、运行转换、输出过程,在运行转换中通过算子对RDD进行转换 输入:外部数据空...

  • Spark算子:RDD基本转换操作(7)–zipWithInde

    关键字:Spark算子、Spark RDD基本转换、zipWithIndex、zipWithUniqueId zi...

  • Spark 算子源码解析

    Spark 的算法可以分为转换算子和行动算法。如果更细致划分可以分为创建算子,转换算子,控制算子和行动算子。 Sp...

  • Action行动算子

    前言 在spark中,有两种算子,Transformation转换算子和 Action行动算子。Transform...

  • 算子

    spark--------- rdd算子学习 ---------转换算子: 返回值还是一个rdd就是转换是懒加载的...

  • RDD 算子分类

    摘要: 本文主要介绍Spark算子的作用,以及算子的分类。 转换:Transformation , 行动: Act...

  • Spark Core源码精读计划#0:Hello Again,

    目录 前言 Spark WordCountSparkConfSparkContextRDDRDD操作(算子) Sp...

  • Spark 转换算子源码

    Spark 转换算子源码 MapPartitionsRDD map 算子 map算子是对RDD中的每一个函数应用传...

网友评论

      本文标题:Spark算子——转换操作

      本文链接:https://www.haomeiwen.com/subject/xheejctx.html