3D PCA

作者: 余绕 | 来源:发表于2021-06-18 20:06 被阅读0次

    读入数据

    pca = read.table("714_1.txt",header = T)
    head(pca)
    
    image.png

    去除第一列

    pca1 = pca[,2:9]
    head(pca1)
    
    image.png

    PCA分析

    pcadev=princomp(pca1,cor=T)
    summary(pcadev,loadings = T)
    comp1=pcadev$loadings[,1]
    comp2=pcadev$loadings[,2]
    comp3=pcadev$loadings[,3]
    
    
    image.png

    Propotion of Variance就是我们要的主成分,Comp.1和Comp.2分别为第一和第二主成分,解释度分别为80.72%和10.34%。推测前三个主成分即可解释90%以上差异。因此选择前三组即可。

    出图

    因为有八组数据所有需要提供八种颜色,每种颜色从前往后以此对应。

    plot3d(comp1,comp2,comp3,col=c("red","gray0","blue","cyan","darkblue","green","darkgreen","lightpink"),size = 10,xlab="PC1",ylab="PC2",zlab="PC3")
    rgl.spheres(comp1,comp2,comp3,r=0.03,col=c("red","gray0","blue","cyan","darkblue","green","darkgreen","lightpink"))
    

    相关文章

      网友评论

          本文标题:3D PCA

          本文链接:https://www.haomeiwen.com/subject/xijlyltx.html