Introduction to Reinforcement Le

作者: 威仪棣棣 | 来源:发表于2017-01-03 16:07 被阅读66次
    • Goal: Learn from reward to adapt the environment
    • Setting:
      • action/decision(agent -> environment)
      • reward/state (environment ->agent)
        • 怎么理解state? -> 人对狗狗施加的命令
      • Policy -- for Agent: learning a classifier(state->action)
      • Agent's Goal: discounted reward $\sum_{t=1}^\infty \gamma^t r_t$
    • Difference between RL and planning:
      • RL: learning a model and find policy from samples
      • Planing: find an optimal solution with a well-defined problem.
    • Difference between RL and SL:
      • All learn the model, but SL学的是batch的数据,一次性学,从数据到算法到模型,DAG单向路径
      • RL:闭环/数据不同,环境->数据->算法->模型->环境
    • 决策影响实践/环境 : 强化学习适用

    相关文章

      网友评论

        本文标题:Introduction to Reinforcement Le

        本文链接:https://www.haomeiwen.com/subject/xjknvttx.html