Introduction to Reinforcement Le

作者: 威仪棣棣 | 来源:发表于2017-01-03 16:07 被阅读66次
  • Goal: Learn from reward to adapt the environment
  • Setting:
    • action/decision(agent -> environment)
    • reward/state (environment ->agent)
      • 怎么理解state? -> 人对狗狗施加的命令
    • Policy -- for Agent: learning a classifier(state->action)
    • Agent's Goal: discounted reward $\sum_{t=1}^\infty \gamma^t r_t$
  • Difference between RL and planning:
    • RL: learning a model and find policy from samples
    • Planing: find an optimal solution with a well-defined problem.
  • Difference between RL and SL:
    • All learn the model, but SL学的是batch的数据,一次性学,从数据到算法到模型,DAG单向路径
    • RL:闭环/数据不同,环境->数据->算法->模型->环境
  • 决策影响实践/环境 : 强化学习适用

相关文章

网友评论

    本文标题:Introduction to Reinforcement Le

    本文链接:https://www.haomeiwen.com/subject/xjknvttx.html