美文网首页
Efficient Processing of Deep Lea

Efficient Processing of Deep Lea

作者: hopewinder | 来源:发表于2019-07-14 15:21 被阅读0次

    This is a collection of papers and projects that interest me


    ==================================

    ---------------    -------------------
    Efficient Processing of Deep Neural Networks: A Tutorial and Survey

    Efficient methods and hardware for deep learning(论文解析)

    ----- 量化  -------------------
    IEEE 754,  fp16,fp32,fp64,int8,int4

    ----- Compressing and Pruning  -------------------

    ----- Matrix  -------------------
    wiki:
    Multiplication Algorithm
    Matrix Multiplication Algorithm
    divide and conquer algorithm, sub-cubic algorithm, strassen algorithm, coppersmith-winograd algorithm;

    The Matrix Calculus You Need For Deep Learning

    Matrix Computation(Golub)

    ----- Optimization  -------------------
    Optimization Methods for Large-Scale Machine Learning (pdf)


    GEMM(General matrix multiplication)
    基本数学库:
    Basic Linear Algebra Subprograms

    ----- 并行计算  -------------------

    ----- Baysian  -------------------
    Novak,  Baysian deep convolutional networks with many channels are gaussian process

    ----- 统计学习 ---------
    (统计学习精要(The Elements of Statistical Learning)课堂笔记)

    ----- Net ---------
    LENET-5, 1986, minist
    AlexNet, 2012, ImagNet
    GoogleNet, 2014
    VGGNet, 2014
    ResNet ( ResNet2015, Wide ResNet, ResNetX )
    DenseNet, 2016
    MobileNet, 2017
    ShuffleNet, 2017

    超分
    SRCNN, FSRCNN, FSRCNN-s, ESPCN, VDSR

    ----- 强化学习 ---------

    ----- 对抗学习 ---------

    ----- 迁移学习 ---------
    (迁移学习简明手册)

    ----- 演化学习 ---------

    ----- Tutorial and Survey ---------
    Tutorial on Hardware Accelerators for Deep Neural Networks

    -------------- Staffs --------------
    fengbintu


    ===== 产业界 ===============
    CPU, FPGA, DSP, GPU, ASIC

    ----- CUDA ---------


    ===== 应用领域 ===============

    ----- 图像分类 ---------
    Image Classification

    ----- 目标检测 ---------
    Object Detection

    ----- 自然语言处理 ---------
    Natural Language Processing


    ===== 基础知识 ===============

    ----- 机器学习 ---------

    吴恩达 Ng

    计算机视觉与卷积神经网络基础, standford cs231n

    Learning Semantic Image Representations at a Large scale)by Jia Yangqing
    Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning(Sebastian Raschka)

    ----- CNN ---------
    卷积 convolution
    激活 activation function
    池化 pooling
    全联接 Full connect / softmax
    BP, backpropagation
    目标函数与梯度下降函数(BGD, SGD, RMSprop, Adam)简介1 
    超参数, 学习率,
    范数规则化, 过拟合, Occam's razor, L0/L1/L2/nuclear norm
    Low Rank
    鲁棒PCA(robust pca), 背景建模,变换不变低秩纹理TILT

    相关文章

      网友评论

          本文标题:Efficient Processing of Deep Lea

          本文链接:https://www.haomeiwen.com/subject/xkobkctx.html