美文网首页
学习笔记CB011:lucene搜索引擎库、IKAnalyzer

学习笔记CB011:lucene搜索引擎库、IKAnalyzer

作者: 利炳根 | 来源:发表于2018-04-21 09:14 被阅读158次

    影视剧字幕聊天语料库特点,把影视剧说话内容一句一句以回车换行罗列三千多万条中国话,相邻第二句很可能是第一句最好回答。一个问句有很多种回答,可以根据相关程度以及历史聊天记录所有回答排序,找到最优,是一个搜索排序过程。

    lucene+ik。lucene开源免费搜索引擎库,java语言开发。ik IKAnalyzer,开源中文切词工具。语料库切词建索引,文本搜索做文本相关性检索,把下一句取出作答案候选集,答案排序,问题分析。

    建索引。eclipse创建maven工程,maven自动生成pom.xml文件,配置包依赖信息,dependencies标签中添加依赖:

    <dependency>
        <groupId>org.apache.lucene</groupId>
        <artifactId>lucene-core</artifactId>
        <version>4.10.4</version>
    </dependency>
    <dependency>
        <groupId>org.apache.lucene</groupId>
        <artifactId>lucene-queryparser</artifactId>
        <version>4.10.4</version>
    </dependency>
    <dependency>
        <groupId>org.apache.lucene</groupId>
        <artifactId>lucene-analyzers-common</artifactId>
        <version>4.10.4</version>
    </dependency>
    <dependency>
        <groupId>io.netty</groupId>
        <artifactId>netty-all</artifactId>
        <version>5.0.0.Alpha2</version>
    </dependency>
    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>fastjson</artifactId>
        <version>1.1.41</version>
    </dependency>
    

    project标签增加配置,依赖jar包自动拷贝lib目录:

    <build>
      <plugins>
        <plugin>
          <groupId>org.apache.maven.plugins</groupId>
          <artifactId>maven-dependency-plugin</artifactId>
          <executions>
            <execution>
              <id>copy-dependencies</id>
              <phase>prepare-package</phase>
              <goals>
                <goal>copy-dependencies</goal>
              </goals>
              <configuration>
                <outputDirectory>${project.build.directory}/lib</outputDirectory>
                <overWriteReleases>false</overWriteReleases>
                <overWriteSnapshots>false</overWriteSnapshots>
                <overWriteIfNewer>true</overWriteIfNewer>
              </configuration>
            </execution>
          </executions>
        </plugin>
        <plugin>
          <groupId>org.apache.maven.plugins</groupId>
          <artifactId>maven-jar-plugin</artifactId>
          <configuration>
            <archive>
              <manifest>
                <addClasspath>true</addClasspath>
                <classpathPrefix>lib/</classpathPrefix>
                <mainClass>theMainClass</mainClass>
              </manifest>
            </archive>
          </configuration>
        </plugin>
      </plugins>
    </build>
    

    https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/ik-analyzer/IK%20Analyzer%202012FF_hf1_source.rar 下载ik源代码把src/org目录拷到chatbotv1工程src/main/java下,刷新maven工程。

    com.shareditor.chatbotv1包下maven自动生成App.java,改成Indexer.java:

    Analyzer analyzer = new IKAnalyzer(true);
    IndexWriterConfig iwc = new IndexWriterConfig(Version.LUCENE_4_9, analyzer);
    iwc.setOpenMode(OpenMode.CREATE);
    iwc.setUseCompoundFile(true);
    IndexWriter indexWriter = new IndexWriter(FSDirectory.open(new File(indexPath)), iwc);
    
    BufferedReader br = new BufferedReader(new InputStreamReader(
            new FileInputStream(corpusPath), "UTF-8"));
    String line = "";
    String last = "";
    long lineNum = 0;
    while ((line = br.readLine()) != null) {
        line = line.trim();
    
        if (0 == line.length()) {
            continue;
        }
    
        if (!last.equals("")) {
            Document doc = new Document();
            doc.add(new TextField("question", last, Store.YES));
            doc.add(new StoredField("answer", line));
            indexWriter.addDocument(doc);
        }
        last = line;
        lineNum++;
        if (lineNum % 100000 == 0) {
            System.out.println("add doc " + lineNum);
        }
    }
    br.close();
    
    indexWriter.forceMerge(1);
    indexWriter.close();
    

    编译拷贝src/main/resources所有文件到target目录,target目录执行

    java -cp $CLASSPATH:./lib/:./chatbotv1-0.0.1-SNAPSHOT.jar com.shareditor.chatbotv1.Indexer ../../subtitle/raw_subtitles/subtitle.corpus ./index
    

    生成索引目录index通过lukeall-4.9.0.jar查看。

    检索服务。netty创建http服务server,代码在https://github.com/warmheartli/ChatBotCourse的chatbotv1目录:

    Analyzer analyzer = new IKAnalyzer(true);
    QueryParser qp = new QueryParser(Version.LUCENE_4_9, "question", analyzer);
    if (topDocs.totalHits == 0) {
        qp.setDefaultOperator(Operator.AND);
        query = qp.parse(q);
        System.out.println(query.toString());
        indexSearcher.search(query, collector);
        topDocs = collector.topDocs();
    }
    
    if (topDocs.totalHits == 0) {
        qp.setDefaultOperator(Operator.OR);
        query = qp.parse(q);
        System.out.println(query.toString());
        indexSearcher.search(query, collector);
        topDocs = collector.topDocs();
    }
    
    ret.put("total", topDocs.totalHits);
    ret.put("q", q);
    JSONArray result = new JSONArray();
    for (ScoreDoc d : topDocs.scoreDocs) {
        Document doc = indexSearcher.doc(d.doc);
        String question = doc.get("question");
        String answer = doc.get("answer");
        JSONObject item = new JSONObject();
        item.put("question", question);
        item.put("answer", answer);
        item.put("score", d.score);
        item.put("doc", d.doc);
        result.add(item);
    }
    ret.put("result", result);
    

    查询索引,query词做切词拼lucene query,检索索引question字段,匹配返回answer字段值作候选集,挑出候选集一条作答案。server通过http访问,如http://127.0.0.1:8765/?q=hello 。中文需转urlcode发送,java端读取按urlcode解析,server启动方法:

    java -cp $CLASSPATH:./lib/:./chatbotv1-0.0.1-SNAPSHOT.jar com.shareditor.chatbotv1.Searcher
    

    聊天界面。一个展示聊天内容框框,选择ckeditor,支持html格式内容展示,一个输入框和发送按钮,html代码:

    <div class="col-sm-4 col-xs-10">
        <div class="row">
            <textarea id="chatarea">
                <div style='color: blue; text-align: left; padding: 5px;'>机器人: 喂,大哥您好,您终于肯跟我聊天了,来侃侃呗,我来者不拒!</div>
                <div style='color: blue; text-align: left; padding: 5px;'>机器人: 啥?你问我怎么这么聪明会聊天?因为我刚刚吃了一堆影视剧字幕!</div>
            </textarea>
        </div>
        <br />
    
        <div class="row">
            <div class="input-group">
                <input type="text" id="input" class="form-control" autofocus="autofocus" onkeydown="submitByEnter()" />
                <span class="input-group-btn">
                <button class="btn btn-default" type="button" onclick="submit()">发送</button>
              </span>
            </div>
        </div>
    </div>
    
    <script type="text/javascript">
    
            CKEDITOR.replace('chatarea',
                    {
                        readOnly: true,
                        toolbar: ['Source'],
                        height: 500,
                        removePlugins: 'elementspath',
                        resize_enabled: false,
                        allowedContent: true
                    });
       
    </script>
    

    调用聊天server,要一个发送请求获取结果控制器:

    public function queryAction(Request $request)
    {
        $q = $request->get('input');
        $opts = array(
            'http'=>array(
                'method'=>"GET",
                'timeout'=>60,
            )
        );
        $context = stream_context_create($opts);
        $clientIp = $request->getClientIp();
        $response = file_get_contents('http://127.0.0.1:8765/?q=' . urlencode($q) . '&clientIp=' . $clientIp, false, $context);
        $res = json_decode($response, true);
        $total = $res['total'];
        $result = '';
        if ($total > 0) {
            $result = $res['result'][0]['answer'];
        }
        return new Response($result);
    }
    

    控制器路由配置:

    chatbot_query:
        path:     /chatbot/query
        defaults: { _controller: AppBundle:ChatBot:query }
    

    聊天server响应时间比较长,不导致web界面卡住,执行submit时异步发请求和收结果:

    var xmlHttp;
    function submit() {
        if (window.ActiveXObject) {
            xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
        }
        else if (window.XMLHttpRequest) {
            xmlHttp = new XMLHttpRequest();
        }
        var input = $("#input").val().trim();
        if (input == '') {
            jQuery('#input').val('');
            return;
        }
        addText(input, false);
        jQuery('#input').val('');
        var datastr = "input=" + input;
        datastr = encodeURI(datastr);
        var url = "/chatbot/query";
        xmlHttp.open("POST", url, true);
        xmlHttp.onreadystatechange = callback;
        xmlHttp.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
        xmlHttp.send(datastr);
    }
    
    function callback() {
        if (xmlHttp.readyState == 4 && xmlHttp.status == 200) {
            var responseText = xmlHttp.responseText;
            addText(responseText, true);
        }
    }
    

    addText往ckeditor添加一段文本:

    function addText(text, is_response) {
        var oldText = CKEDITOR.instances.chatarea.getData();
        var prefix = '';
        if (is_response) {
            prefix = "<div style='color: blue; text-align: left; padding: 5px;'>机器人: "
        } else {
            prefix = "<div style='color: darkgreen; text-align: right; padding: 5px;'>我: "
        }
        CKEDITOR.instances.chatarea.setData(oldText + "" + prefix + text + "</div>");
    }
    

    代码:
    https://github.com/warmheartli/ChatBotCourse
    https://github.com/warmheartli/shareditor.com

    效果演示:http://www.shareditor.com/chatbot/

    导流。统计网站流量情况。cnzz统计看最近半个月受访页面流量情况,用户访问集中页面。增加图库动态按钮。吸引用户点击,在每个页面右下角放置动态小图标,页面滚动它不动,用户点了直接跳到想要引流的页面。搜客服漂浮代码。
    创建js文件,lrtk.js :

    $(function()
    {
        var tophtml="<a href=\"http://www.shareditor.com/chatbot/\" target=\"_blank\"><div id=\"izl_rmenu\" class=\"izl-rmenu\"><div class=\"btn btn-phone\"></div><div class=\"btn btn-top\"></div></div></a>";
        $("#top").html(tophtml);
        $("#izl_rmenu").each(function()
        {
            $(this).find(".btn-phone").mouseenter(function()
            {
                $(this).find(".phone").fadeIn("fast");
            });
            $(this).find(".btn-phone").mouseleave(function()
            {
                $(this).find(".phone").fadeOut("fast");
            });
            $(this).find(".btn-top").click(function()
            {
                $("html, body").animate({
                    "scroll-top":0
                },"fast");
            });
        });
        var lastRmenuStatus=false;
    
        $(window).scroll(function()
        {
            var _top=$(window).scrollTop();
            if(_top>=0)
            {
                $("#izl_rmenu").data("expanded",true);
            }
            else
            {
                $("#izl_rmenu").data("expanded",false);
            }
            if($("#izl_rmenu").data("expanded")!=lastRmenuStatus)
            {
                lastRmenuStatus=$("#izl_rmenu").data("expanded");
                if(lastRmenuStatus)
                {
                    $("#izl_rmenu .btn-top").slideDown();
                }
                else
                {
                    $("#izl_rmenu .btn-top").slideUp();
                }
            }
        });
    });
    

    上半部分定义id=top的div标签内容。一个id为izl_rmenu的div,css格式定义在另一个文件lrtk.css里:

    .izl-rmenu{position:fixed;left:85%;bottom:10px;padding-bottom:73px;z-index:999;}
    .izl-rmenu .btn{width:72px;height:73px;margin-bottom:1px;cursor:pointer;position:relative;}
    .izl-rmenu .btn-top{background:url(http://www.shareditor.com/uploads/media/default/0001/01/thumb_416_default_big.png) 0px 0px no-repeat;background-size: 70px 70px;display:none;}
    

    下半部分当页面滚动时div展开。

    在所有页面公共代码部分增加

    <div id="top"></div>
    

    庞大语料库运用,LSTM-RNN训练,中文语料转成算法识别向量形式,最强大word embedding工具word2vec。

    word2vec输入切词文本文件,影视剧字幕语料库回车换行分隔完整句子,所以我们先对其做切词,word_segment.py文件:

    # coding:utf-8
    
    import sys
    import importlib
    importlib.reload(sys)
    
    import jieba
    from jieba import analyse
    
    def segment(input, output):
        input_file = open(input, "r")
        output_file = open(output, "w")
        while True:
            line = input_file.readline()
            if line:
                line = line.strip()
                seg_list = jieba.cut(line)
                segments = ""
                for str in seg_list:
                    segments = segments + " " + str
                segments = segments + "\n"
                output_file.write(segments)
            else:
                break
        input_file.close()
        output_file.close()
    
    if __name__ == '__main__':
        if 3 != len(sys.argv):
            print("Usage: ", sys.argv[0], "input output")
            sys.exit(-1)
        segment(sys.argv[1], sys.argv[2]);
    

    使用:

    python word_segment.py subtitle/raw_subtitles/subtitle.corpus segment_result
    

    word2vec生成词向量。word2vec可从https://github.com/warmheartli/ChatBotCourse/tree/master/word2vec获取,make编译生成二进制文件。
    执行:

    ./word2vec -train ../segment_result -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15
    

    生成vectors.bin词向量,二进制格式,word2vec自带distance工具来验证:

    ./distance vectors.bin
    

    词向量二进制文件格式加载。word2vec生成词向量二进制格式:词数目(空格)向量维度。
    加载词向量二进制文件python脚本:

    # coding:utf-8
    
    import sys
    import struct
    import math
    import numpy as np
    
    reload(sys)
    sys.setdefaultencoding( "utf-8" )
    
    max_w = 50
    float_size = 4
    
    def load_vectors(input):
        print "begin load vectors"
    
        input_file = open(input, "rb")
    
        # 获取词表数目及向量维度
        words_and_size = input_file.readline()
        words_and_size = words_and_size.strip()
        words = long(words_and_size.split(' ')[0])
        size = long(words_and_size.split(' ')[1])
        print "words =", words
        print "size =", size
    
        word_vector = {}
    
        for b in range(0, words):
            a = 0
            word = ''
            # 读取一个词
            while True:
                c = input_file.read(1)
                word = word + c
                if False == c or c == ' ':
                    break
                if a < max_w and c != '\n':
                    a = a + 1
            word = word.strip()
    
            # 读取词向量
            vector = np.empty([200])
            for index in range(0, size):
                m = input_file.read(float_size)
                (weight,) = struct.unpack('f', m)
                vector[index] = weight
    
            # 将词及其对应的向量存到dict中
            word_vector[word.decode('utf-8')] = vector
    
        input_file.close()
    
        print "load vectors finish"
        return word_vector
    
    if __name__ == '__main__':
        if 2 != len(sys.argv):
            print "Usage: ", sys.argv[0], "vectors.bin"
            sys.exit(-1)
        d = load_vectors(sys.argv[1])
        print d[u'真的']
    

    运行方式如下:

    python word_vectors_loader.py vectors.bin
    

    参考资料:

    《Python 自然语言处理》

    http://www.shareditor.com/blogshow?blogId=113

    http://www.shareditor.com/blogshow?blogId=114

    http://www.shareditor.com/blogshow?blogId=115

    欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi

    相关文章

      网友评论

          本文标题:学习笔记CB011:lucene搜索引擎库、IKAnalyzer

          本文链接:https://www.haomeiwen.com/subject/xlvtlftx.html