美文网首页
9024 week6 伪代码

9024 week6 伪代码

作者: GhostintheCode | 来源:发表于2018-10-28 13:16 被阅读0次

    伪代码

    Array-of-edges Representation

    Graph initialisation

    newGraph(V):
    | Input number of nodes V
    | Output new empty graph
    |
    | g.nV = V // #vertices (numbered 0..V-1)
    | g.nE = 0 // #edges
    | allocate enough memory for g.edges[]
    | return g
    

    How much is enough? … No more than V(V-1)/2 … Much less in practice (sparse graph)

    Edge insertion

    insertEdge(g,(v,w)):
    | Input graph g, edge (v,w)
    |
    | g.edges[g.nE]=(v,w)
    | g.nE=g.nE+1
    | g.nE=g.nE-1
    

    Exercise #3: Array-of-edges Representation 27/83

    Assuming an array-of-edges representation …
    Write an algorithm to output all edges of the graph
    answer:

    show(g):
    | Input graph g
    |
    | for all i=0 to g.nE-1 do
    | print g.edges[i]
    | end for
    

    Time complexity: O(E)

    Adjacency Matrix Representation

    Graph initialisation

    newGraph(V):
    | Input number of nodes V
    | Output new empty graph
    |
    | g.nV = V // #vertices (numbered 0..V-1) 
    | g.nE = 0 // #edges
    | allocate memory for g.edges[][]
    | for all i,j=0..V-1 do
    | g.edges[i][j]=0 // false
    | end for
    | return g
    

    Edge insertion

    insertEdge(g,(v,w)):
    | Input graph g, edge (v,w)
    |
    | if g.edges[v][w]=0 then // (v,w) not in graph 
    | g.edges[v][w]=1 // set to true
    | g.edges[w][v]=1
    | g.nE=g.nE+1
    | end if
    

    Edge removal

    removeEdge(g,(v,w)):
    | Input graph g, edge (v,w)
    |
    | if g.edges[v][w]≠0 then // (v,w) in graph 
    | g.edges[v][w]=0 // set to false 
    | g.edges[w][v]=0
    | g.nE=g.nE-1
    | end if
    

    Exercise #4: Show Graph

    Assuming an adjacency matrix representation ...
    Write an algorithm to output all edges of the graph (no duplicates)

    show(g):
    | Input graph g
    |
    | for all i=0 to g.nV-2 do
    | | for all j=i+1 to g.nV-1 do | | if g.edges[i][j] then
    | | print i"—"j
    | | end if
    | | end for
    | end for
    
    

    Time complexity: O(V^2)

    Exercise #5:

    Analyse storage cost and time complexity of adjacency matrix representation
    Storage cost: O(V^2)
    If the graph is sparse, most storage is wasted.
    Cost of operations:
    initialisation: O(V^2) (initialise V×V matrix)
    insert edge: O(1)(set two cells in matrix)
    delete edge: O(1) (unset two cells in matrix)

    Adjacency List Representation

    Graph initialisation

    newGraph(V):
    | Input number of nodes V
    | Output new empty graph
    |
    | g.nV = V // #vertices (numbered 0..V-1) 
    | g.nE = 0 // #edges
    | allocate memory for g.edges[]
    | for all i=0..V-1 do
    | g.edges[i]=NULL // empty list
    | end for
    | return g
    

    Edge insertion:

    insertEdge(g,(v,w)):
    | Input graph g, edge (v,w) 
    |
    | insertLL(g.edges[v],w)
    | insertLL(g.edges[w],v)
    | g.nE=g.nE+1
    

    Edge removal:

    removeEdge(g,(v,w)):
    | Input graph g, edge (v,w) 
    |
    | deleteLL(g.edges[v],w)
    | deleteLL(g.edges[w],v)
    | g.nE=g.nE-1
    
    

    Exercise #7: Graph ADT Client

    Write a program that uses the graph ADT to build the graph depicted below
    50/83
    print all the nodes that are incident to vertex 1 in ascending order


    #include <stdio.h>
    #include "Graph.h"
    #define NODES 4
    #define NODE_OF_INTEREST 1
    int main(void) {
    Graph g = newGraph(NODES);
       Edge e;
       e.v = 0; e.w = 1; insertEdge(g,e);
       e.v = 0; e.w = 3; insertEdge(g,e);
       e.v = 1; e.w = 3; insertEdge(g,e);
       e.v = 3; e.w = 2; insertEdge(g,e);
       int v;
       for (v = 0; v < NODES; v++) {
          if (adjacent(g, v, NODE_OF_INTEREST))
             printf("%d\n", v);
    }
       freeGraph(g);
    return 0; }
    

    Graph ADT (Array of Edges)
    Implementation of GraphRep (array-of-edges representation)

    typedef struct GraphRep {
       Edge *edges; // array of edges
           int   nV;// #vertices (numbered 0..nV-1)
       int   nE;// #edges
       int   n;// size of edge array
    } GraphRep;
    

    Graph ADT (Adjacency Matrix)
    Implementation of GraphRep (adjacency-matrix representation)

    typedef struct GraphRep {
       int  **edges; // adjacency matrix
       int    nV;    // #vertices
       int    nE;    // #edges
    } GraphRep;
    

    Implementation of graph initialisation (adjacency-matrix representation)

    Graph newGraph(int V) {
       assert(V >= 0);
        int i;
       Graph g = malloc(sizeof(GraphRep));
       g->nV = V;  g->nE = 0;
       // allocate memory for each row
       g->edges = malloc(V * sizeof(int *));
       // allocate memory for each column and initialise with 0
       for (i = 0; i < V; i++) {
          g->edges[i] = calloc(V, sizeof(int)); 
          assert(g->edges[i] != NULL);
       }
    return g; 
    }
    

    standard library function calloc(size_t nelems, size_t nbytes) allocates a memory block of size nelems*nbytes and sets all bytes in that block to zero

    Implementation of edge insertion/removal (adjacency-matrix representation)

    // check if vertex is valid in a graph
    bool validV(Graph g, Vertex v) {
       return (g != NULL && v >= 0 && v < g->nV);
    }
    void insertEdge(Graph g, Edge e) {
       assert(g != NULL && validV(g,e.v) && validV(g,e.w));
       if (!g->edges[e.v][e.w]) {  // edge e not in graph
          g->edges[e.v][e.w] = 1;
          g->edges[e.w][e.v] = 1;
          g->nE++;
    } }
    void removeEdge(Graph g, Edge e) {
       assert(g != NULL && validV(g,e.v) && validV(g,e.w));
       if (g->edges[e.v][e.w]) {   // edge e in graph
          g->edges[e.v][e.w] = 0;
          g->edges[e.w][e.v] = 0;
          g->nE--;
    } }
    

    Exercise #8: Checking Neighbours (i)

    Graph ADT (Adjacency List)
    Implementation of GraphRep (adjacency-list representation)

    typedef struct GraphRep {
       Node **edges;  // array of lists
       int    nV;     // #vertices
       int    nE;     // #edges
    } GraphRep;
    typedef struct Node {
       Vertex       v;
       struct Node *next;
    } Node;
    

    Exercise #9: Checking Neighbours (ii)

    Depth-first Search

    Recursive DFS path checking

    hasPath(G,src,dest):
    | Input graph G, vertices src,dest
    | Output true if there is a path from src to dest in G, | false otherwise
    |
    | return dfsPathCheck(G,src,dest)
    
    dfsPathCheck(G,v,dest):
     | mark v as visited
    | if v=dest then // found dest
    | return true
    | else
    | | for all (v,w)∈edges(G) do
    | | | if w has not been visited then
    | | | return dfsPathCheck(G,w,dest) // found path via w to dest | | | end if
    | | end for
    | end if
    | return false // no path from v to dest
    
    visited[] // store previously visited node, for each vertex 0..nV-1
    findPath(G,src,dest):
    | Input graph G, vertices src,dest
    |
    | for all vertices v∈G do
    | visited[v]=-1
    | end for
    | visited[src]=src
    | if dfsPathCheck(G,src,dest) then // show path in dest..src order | | v=dest
                                    // found edge from v to dest
    | |
    | |
    | |
    | | end while | | print src | end if
    while v≠src do print v"-"
    v=visited[v]
    dfsPathCheck(G,v,dest):
    | if v=dest then  // found edge from v to dest
    | return true
    | else
    | | for all (v,w)∈edges(G) do | | | if visited[w]=-1 then | | | | visited[w]=v
    | | | | if dfsPathCheck(G,w,dest) then
    | | | | return true | | | | end if
    | | | end if
    | | end for
    | end if
    | return false // no path from v to dest
    

    DFS can also be described non-recursively (via a stack):

    hasPath(G,src,dest):
    | Input graph G, vertices src,dest
    | Output true if there is a path from src to dest in G, 
    | false otherwise
    |
    | push src onto new stack s
    | found=false
    | while not found and s is not empty do
    | | pop v from s
    | | mark v as visited
    | | if v=dest then
    | | found=true
    | | else
    | | | for each (v,w)∈edges(G) such that w has not been visited
    | | | push w onto s | | | end for
    | | end if
    | end while
    | return found
    

    Uses standard stack operations (push, pop, check if empty)
    Time complexity is the same: O(V+E) (each vertex added to stack once, each element in vertex's adjacency list visited once)

    Breadth-first Search

    visited[] // array of visiting orders, indexed by vertex 0..nV-1
    findPathBFS(G,src,dest):
    | Input graph G, vertices src,dest
    |
    | for all vertices v∈G do
    | visited[v]=-1
    | end for
    | enqueue src into new queue q
    | visited[src]=src
    | found=false
    | while not found and q is not empty do
    | | dequeue v from q
    | | if v=dest then
    | | found=true
    | | else
    | | | for each (v,w)∈edges(G) such that visited[w]=-1 do enqueue w into q
    | | | visited[w]=v
    | | | end for
    | | end if
    | end while
    | if found then
    | display path in dest..src order | end if
    

    相关文章

      网友评论

          本文标题:9024 week6 伪代码

          本文链接:https://www.haomeiwen.com/subject/xolptqtx.html