什么是锁?
在单进程的系统中,当存在多个线程可以同时改变某个变量(可变共享变量)时,就需要对变量或代码块做同步,使其在修改这种变量时能够线性执行(按顺序执行)。
而同步的本质是通过锁来实现的。为了实现多个线程在一个时刻同一个代码块只能有一个线程可执行,那么需要在某个地方做个标记,这个标记必须每个线程都能看到,当标记不存在时可以设置该标记,其余后续线程发现已经有标记了则等待拥有标记的线程结束同步代码块取消标记后再去尝试设置标记。这个标记可以理解为锁。
不同地方实现锁的方式也不一样,只要能满足所有线程都能看得到标记即可。如 Java 中 synchronize 是在对象头设置标记,Lock 接口的实现类基本上都只是某一个 volitile 修饰的 int 型变量其保证每个线程都能拥有对该 int 的可见性和原子修改,linux 内核中也是利用互斥量或信号量等内存数据做标记。
什么是分布式锁?
通常我们会把同一个服务分布式部署到多个服务器节点上,从而提高服务的可用性,并发量。
- 分布式与单机情况下最大的不同在于其不是多线程而是多进程。
- 多线程由于可以共享堆内存,因此可以简单的采取内存作为标记存储。而进程之间甚至可能都不在同一台物理机上,因此需要将标记存储在一个所有进程都能看到的地方。
当在分布式模型下,数据只有一份,此时需要利用锁的技术控制某一时刻修改数据的进程数。与单机模式下的锁不仅需要保证进程可见,还需要考虑进程与锁之间的网络问题。
分布式锁的一些特点
当我们确定了在不同节点上需要分布式锁,那么我们需要了解分布式锁到底应该有哪些特点:
- 互斥性:和我们本地锁一样互斥性是最基本,但是分布式锁需要保证在不同节点的不同线程的互斥。
- 可重入性:同一个节点上的同一个线程如果获取了锁之后那么也可以再次获取这个锁。
- 锁超时:和本地锁一样支持锁超时,防止死锁。
- 高效,高可用:加锁和解锁需要高效,同时也需要保证高可用防止分布式锁失效,可以增加降级。
- 支持阻塞和非阻塞:和ReentrantLock一样支持lock和trylock以及tryLock(long timeOut)。
- 支持公平锁和非公平锁(可选):公平锁的意思是按照请求加锁的顺序获得锁,非公平锁就相反是无序的。这个一般来说实现的比较少。
常见的分布式锁实现方式
我们了解了一些特点之后,我们一般实现分布式锁有以下几个方式:
- MySql
- Redis
- Zookeeper
- 自研分布式锁(如谷歌的Chubby)
一:基于MySQL数据库做分布式锁
锁思想
首先来说一下Mysql分布式锁的实现原理,相对来说这个比较容易理解,毕竟数据库和我们开发人员在平时的开发中息息相关。对于分布式锁我们一般会提供三个方法:
- lock()
- tryLock()和tryLock(long timeout)
- unlock()
- lock()
lock一般是阻塞式的获取锁,意思就是不获取到锁誓不罢休,那么我们可以写一个死循环来执行其操作:
mysqlLock.lcok内部是一个sql,为了达到可重入锁的效果那么我们应该先进行查询,如果有值,那么需要比较node_info是否一致,这里的node_info可以用机器IP和线程名字来表示,如果一致那么就加可重入锁count的值,如果不一致那么就返回false。如果没有值那么直接插入一条数据。
需要注意的是这一段代码需要加事务,必须要保证这一系列操作的原子性。
- tryLock()和tryLock(long timeout)
tryLock()是非阻塞获取锁,如果获取不到那么就会马上返回,代码可以如下:
tryLock(long timeout)实现如下:
mysqlLock.lock和上面一样,但是要注意的是select ... for update这个是阻塞的获取行锁,如果同一个资源并发量较大还是有可能会退化成阻塞的获取锁。
- unlock()
unlock的话如果这里的count为1那么可以删除,如果大于1那么需要减去1。
锁超时问题
我们有可能会遇到我们的机器节点挂了,那么这个锁就不会得到释放,我们可以启动一个定时任务,通过计算一般我们处理任务的一般的时间,比如是5ms,那么我们可以稍微扩大一点,当这个锁超过20ms没有被释放我们就可以认定是节点挂了然后将其直接释放。
Mysql小结
- 适用场景: Mysql分布式锁一般适用于资源不存在数据库,如果数据库存在比如订单,那么可以直接对这条数据加行锁,不需要我们上面多的繁琐的步骤,比如一个订单,那么我们可以用select * from order_table where id = 'xxx' for update进行加行锁,那么其他的事务就不能对其进行修改。
- 优点:理解起来简单,不需要维护额外的第三方中间件(比如Redis,Zk)。
- 缺点:虽然容易理解但是实现起来较为繁琐,需要自己考虑锁超时,加事务等等。性能局限于数据库,一般对比缓存来说性能较低。对于高并发的场景并不是很适合。
- Mysql事务是线程安全的
- Mysql事务并发问题可以通过设置事务的隔离级别来解决
方法一:基于表主键唯一做分布式锁
基于乐观锁
利用主键唯一的特性,如果有多个请求同时提交到数据库的话,数据库会保证只有一个操作可以成功,那么我们就可以认为操作成功的那个线程获得了该方法的锁,当方法执行完毕之后,想要释放锁的话,删除这条数据库记录即可。
上面这种简单的实现有以下几个问题:
- 这把锁强依赖数据库的可用性,数据库是一个单点,一旦数据库挂掉,会导致业务系统不可用。
- 这把锁没有失效时间,一旦解锁操作失败,就会导致锁记录一直在数据库中,其他线程无法再获得到锁。
- 这把锁只能是非阻塞的,因为数据的 insert 操作,一旦插入失败就会直接报错。没有获得锁的线程并不会进入排队队列,要想再次获得锁就要再次触发获得锁操作。
- 这把锁是非重入的,同一个线程在没有释放锁之前无法再次获得该锁。因为数据中数据已经存在了。
- 这把锁是非公平锁,所有等待锁的线程凭运气去争夺锁。
- 在 MySQL 数据库中采用主键冲突防重,在大并发情况下有可能会造成锁表现象。
当然,我们也可以有其他方式解决上面的问题。
- 数据库是单点?搞两个数据库,数据之前双向同步,一旦挂掉快速切换到备库上。
- 没有失效时间?只要做一个定时任务,每隔一定时间把数据库中的超时数据清理一遍。
- 非阻塞的?搞一个 while 循环,直到 insert 成功再返回成功。
- 非重入的?在数据库表中加个字段,记录当前获得锁的机器的主机信息和线程信息,那么下次再获取锁的时候先查询数据库,如果当前机器的主机信息和线程信息在数据库可以查到的话,直接把锁分配给他就可以了。
- 非公平的?再建一张中间表,将等待锁的线程全记录下来,并根据创建时间排序,只有最先创建的允许获取锁。
- 比较好的办法是在程序中生产主键进行防重。
方法二:基于数据库排他锁做分布式锁
基于悲观锁
在查询语句后面增加for update,数据库会在查询过程中给数据库表增加排他锁 (注意: InnoDB 引擎在加锁的时候,只有通过索引进行检索的时候才会使用行级锁,否则会使用表级锁。这里我们希望使用行级锁,就要给要执行的方法字段名添加索引,值得注意的是,这个索引一定要创建成唯一索引,否则会出现多个重载方法之间无法同时被访问的问题。重载方法的话建议把参数类型也加上。)。当某条记录被加上排他锁之后,其他线程无法再在该行记录上增加排他锁。
我们可以认为获得排他锁的线程即可获得分布式锁,当获取到锁之后,可以执行方法的业务逻辑,执行完方法之后,通过connection.commit()操作来释放锁。
这种方法可以有效的解决上面提到的无法释放锁和阻塞锁的问题。
-
阻塞锁? for update语句会在执行成功后立即返回,在执行失败时一直处于阻塞状态,直到成功。
-
锁定之后服务宕机,无法释放?使用这种方式,服务宕机之后数据库会自己把锁释放掉。
-
但是还是无法直接解决数据库单点和可重入问题。
-
这里还可能存在另外一个问题,虽然我们对方法字段名使用了唯一索引,并且显示使用 for update 来使用行级锁。但是,MySQL 会对查询进行优化,即便在条件中使用了索引字段,但是否使用索引来检索数据是由 MySQL 通过判断不同执行计划的代价来决定的,如果 MySQL 认为全表扫效率更高,比如对一些很小的表,它就不会使用索引,这种情况下 InnoDB 将使用表锁,而不是行锁。如果发生这种情况就悲剧了。
-
还有一个问题,就是我们要使用排他锁来进行分布式锁的 lock,那么一个排他锁长时间不提交,就会占用数据库连接。一旦类似的连接变得多了,就可能把数据库连接池撑爆。
优缺点
- 优点:简单,易于理解
- 缺点:会有各种各样的问题(操作数据库需要一定的开销,使用数据库的行级锁并不一定靠谱,性能不靠谱)
基于 Redis 做分布式锁
方案一:
基于 redis 的 setnx()、expire() 方法做分布式锁
setnx()
setnx 的含义就是 SET if Not Exists,其主要有两个参数 setnx(key, value)。该方法是原子的,如果 key 不存在,则设置当前 key 成功,返回 1;如果当前 key 已经存在,则设置当前 key 失败,返回 0。
expire()
expire 设置过期时间,要注意的是 setnx 命令不能设置 key 的超时时间,只能通过 expire() 来对 key 设置。
使用步骤
1、setnx(lockkey, 1) 如果返回 0,则说明占位失败;如果返回 1,则说明占位成功
2、expire() 命令对 lockkey 设置超时时间,为的是避免死锁问题。
3、执行完业务代码后,可以通过 delete 命令删除 key。
这个方案其实是可以解决日常工作中的需求的,但从技术方案的探讨上来说,可能还有一些可以完善的地方。比如,如果在第一步 setnx 执行成功后,在 expire() 命令执行成功前,发生了宕机的现象,那么就依然会出现死锁的问题。
方案二:
基于 getset() 方法做分布式锁
这个方案的背景主要是在 setnx() 和 expire() 的方案上针对可能存在的死锁问题,做了一些优化。
getset()
这个命令主要有两个参数 getset(key,newValue)。该方法是原子的,对 key 设置 newValue 这个值,并且返回 key 原来的旧值。假设 key 原来是不存在的,那么多次执行这个命令,会出现下边的效果:
- getset(key, "value1") 返回 null 此时 key 的值会被设置为 value1
- getset(key, "value2") 返回 value1 此时 key 的值会被设置为 value2
- 依次类推!
使用步骤
- setnx(lockkey, 当前时间+过期超时时间),如果返回 1,则获取锁成功;如果返回 0 则没有获取到锁,转向 2。
- get(lockkey) 获取值 oldExpireTime ,并将这个 value 值与当前的系统时间进行比较,如果小于当前系统时间,则认为这个锁已经超时,可以允许别的请求重新获取,转向 3。
- 计算 newExpireTime = 当前时间+过期超时时间,然后 getset(lockkey, newExpireTime) 会返回当前 lockkey 的值currentExpireTime。
- 判断 currentExpireTime 与 oldExpireTime 是否相等,如果相等,说明当前 getset 设置成功,获取到了锁。如果不相等,说明这个锁又被别的请求获取走了,那么当前请求可以直接返回失败,或者继续重试。
- 在获取到锁之后,当前线程可以开始自己的业务处理,当处理完毕后,比较自己的处理时间和对于锁设置的超时时间,如果小于锁设置的超时时间,则直接执行 delete 释放锁;如果大于锁设置的超时时间,则不需要再对锁进行处理。
方案三:SET 多参数加锁
SET key value [NX|XX] [EX seconds] [PX milliseconds]
解决问题:
-
1.死锁问题:需要给key设置超时时间,一个接口基本是200ms,最大允许500ms,锁超时时间设置为1s。
-
2.锁续命问题:定时器判断,获取锁内容看是不是当前锁set的内容,如果是,则对锁进行续命(watch dog),最多续命一次。(参考Redisson:这里面初始化了一个定时器,dely 的时间是 internalLockLeaseTime/3。在 Redisson 中,internalLockLeaseTime 是 30s,也就是每隔 10s 续期一次,每次 30s。)
-
3.释放锁:释放锁的时候,获取锁内容看是不是当前锁set的内容,避免释放了不是该线程加的锁。同时停止计时器。
-
4.如果锁获取失败
-
阻塞锁:则睡眠500ms再次重试,重试三次,则返回获取锁失败。
-
非阻塞锁:直接返回获取锁失败。
缺点:
存在一个问题redis master宕机,但是slave节点没有同步到锁
改进点:
锁超时应该是在在客户端启动一个定时器来判断。定时器线程判断工作线程是否还在工作,如果工作中就锁续命,假如工作的线程挂了,定时器也要判断,然后释放锁,停止定时器。
方案四:基于 Redlock算法 做分布式锁
我们想象一个这样的场景当机器A申请到一把锁之后,如果Redis主宕机了,这个时候从机并没有同步到这一把锁,那么机器B再次申请的时候就会再次申请到这把锁,为了解决这个问题Redis作者提出了RedLock红锁的算法,在Redisson中也对RedLock进行了实现。
Redlock 是 Redis 的作者 antirez 给出的集群模式的 Redis 分布式锁,它基于 N 个完全独立的 Redis 节点(通常情况下 N 可以设置成 5)。
算法的步骤如下:
1、客户端获取当前时间,以毫秒为单位。
2、客户端尝试获取 N 个节点的锁,(每个节点获取锁的方式和前面说的缓存锁一样),N 个节点以相同的 key 和 value 获取锁。客户端需要设置接口访问超时,接口超时时间需要远远小于锁超时时间,比如锁自动释放的时间是 10s,那么接口超时大概设置 5-50ms。这样可以在有 redis 节点宕机后,访问该节点时能尽快超时,而减小锁的正常使用。
3、客户端计算在获得锁的时候花费了多少时间,方法是用当前时间减去在步骤一获取的时间,只有客户端获得了超过 3 个节点的锁,而且获取锁的时间小于锁的超时时间,客户端才获得了分布式锁。
4、客户端获取的锁的时间为设置的锁超时时间减去步骤三计算出的获取锁花费时间。
5、如果客户端获取锁失败了,客户端会依次删除所有的锁。 使用 Redlock 算法,可以保证在挂掉最多 2 个节点的时候,分布式锁服务仍然能工作,这相比之前的数据库锁和缓存锁大大提高了可用性,由于 redis 的高效性能,分布式缓存锁性能并不比数据库锁差。
通过上面的代码,我们需要实现多个Redis集群,然后进行红锁的加锁,解锁。具体的步骤如下:
- 首先生成多个Redis集群的Rlock,并将其构造成RedLock。
- 依次循环对三个集群进行加锁。
- 如果循环加锁的过程中加锁失败,那么需要判断加锁失败的次数是否超出了最大值,这里的最大值是根据集群的个数,比如三个那么只允许失败一个,五个的话只允许失败两个,要保证多数成功。
- 加锁的过程中需要判断是否加锁超时,有可能我们设置加锁只能用3ms,第一个集群加锁已经消耗了3ms了。那么也算加锁失败。
- 3,4步里面加锁失败的话,那么就会进行解锁操作,解锁会对所有的集群在请求一次解锁。
可以看见RedLock基本原理是利用多个Redis集群,用多数的集群加锁成功,减少Redis某个集群出故障,造成分布式锁出现问题的概率。
优点:
性能高
缺点:
失效时间设置多长时间为好?如何设置的失效时间太短,方法没等执行完,锁就自动释放了,那么就会产生并发问题。如果设置的时间太长,其他获取锁的线程就可能要平白的多等一段时间。
基于 Redisson(Redis的客户端) 做分布式锁
Java开发者都知道Jedis,Jedis是Redis的Java实现的客户端,其API提供了比较全面的Redis命令的支持。Redission也是Redis的客户端,相比于Jedis功能简单。Jedis简单使用阻塞的I/O和redis交互,Redission通过Netty支持非阻塞I/O。Jedis最新版本2.9.0是2016年的快3年了没有更新,而Redission最新版本是2018.10月更新。
Redission封装了锁的实现,其继承了java.util.concurrent.locks.Lock的接口,让我们像操作我们的本地Lock一样去操作Redission的Lock,下面介绍一下其如何实现分布式锁。
redisson 是 redis 官方的分布式锁组件。GitHub 地址:https://github.com/redisson/redisson
失效时间设置多长时间为好?
这个问题在 redisson 的做法是:每获得一个锁时,只设置一个很短的超时时间,同时起一个线程在每次快要到超时时间时去刷新锁的超时时间。在释放锁的同时结束这个线程。
基于 ZooKeeper 做分布式锁
zookeeper 锁相关基础知识
- zk 一般由多个节点构成(单数),采用 zab 一致性协议。因此可以将 zk 看成一个单点结构,对其修改数据其内部自动将所有节点数据进行修改而后才提供查询服务。
- zk 的数据以目录树的形式,每个目录称为 znode, znode 中可存储数据(一般不超过 1M),还可以在其中增加子节点。
- 子节点有三种类型。序列化节点,每在该节点下增加一个节点自动给该节点的名称上自增。临时节点,一旦创建这个 znode 的客户端与服务器失去联系,这个 znode 也将自动删除。最后就是普通节点。
- Watch 机制,client 可以监控每个节点的变化,当产生变化会给 client 产生一个事件。
zk 基本锁
- 原理:利用临时节点与 watch 机制。每个锁占用一个普通节点 /lock,当需要获取锁时在 /lock 目录下创建一个临时节点,创建成功则表示获取锁成功,失败则 watch/lock 节点,有删除操作后再去争锁。临时节点好处在于当进程挂掉后能自动上锁的节点自动删除即取消锁。
- 缺点:所有取锁失败的进程都监听父节点,很容易发生羊群效应,即当释放锁后所有等待进程一起来创建节点,并发量很大。
zk 锁优化
- 原理:上锁改为创建临时有序节点,每个上锁的节点均能创建节点成功,只是其序号不同。只有序号最小的可以拥有锁,如果这个节点序号不是最小的则 watch 序号比本身小的前一个节点 (公平锁)。
步骤:
- 在 /lock 节点下创建一个有序临时节点 (EPHEMERAL_SEQUENTIAL)。
- 判断创建的节点序号是否最小,如果是最小则获取锁成功。不是则取锁失败,然后 watch 序号比本身小的前一个节点。
- 当取锁失败,设置 watch 后则等待 watch 事件到来后,再次判断是否序号最小。
- 取锁成功则执行代码,最后释放锁(删除该节点)。
优点:
有效的解决单点问题,不可重入问题,非阻塞问题以及锁无法释放的问题。实现起来较为简单。
缺点:
性能上可能并没有缓存服务那么高,因为每次在创建锁和释放锁的过程中,都要动态创建、销毁临时节点来实现锁功能。ZK 中创建和删除节点只能通过 Leader 服务器来执行,然后将数据同步到所有的 Follower 机器上。还需要对 ZK的原理有所了解。
Zookeeper和Redis做分布式锁的区别?
Reids:
- Redis只保证最終一致性,副本间的数据复制是异步进行(Set是写,Get是读,Reids集群
一般是读写分离架
构,存在主从同步延迟情况),主从切换之后可能有部分数据没有复制过去可能会「丢失锁」情况,故强-
致性要求的业务不推荐使用Reids, 推荐使用zk。 - Redis集群各方法的响应时间均为最低。随着并发量和业务数量的提升其响应时间会有明显上升(公网集群影
响因素偏大),但是极限qps可以达到最大且基本无异常
ZooKeeper:
- 使用zookeeper集群,锁原理是使用zookeeper的临时顺序节点,临时顺序节点的生命周期在Client与集群的
Session结束时结束。因此如果某个Client节点存在网络问题,与Zookeeper集群断开连接,Session超时同样
会导致锁被错误的释放(导致被其他线程错误地持有),因此zookeeper也无法保证完全一致。 - ZK具有较好的稳定性;响应时间抖动很小,没有出现异常。但是随着并发量和业务数量的提升其响应时间和
qps会明显下隆。
总结:
- zookeeper每次进行锁操作前都要创建若千节点,完成后要释放节点,会浪费很多时间;
- 而Redis只是简单的数据操作,没有这个问题。
自研分布式锁(如谷歌的Chubby)
Chubby为了解决分布式系统中的一致性问题,其中最常见的就是分布式系统的选主需求及一致性的数据存储。Chubby选择通过提供粗粒度锁服务的方式实现,粗粒度(Coarse-grained)锁服务相对于细粒度(Fine-grained)锁服务,指的是应用加锁时间比较长的场景,达到几个小时或者几天。
本质上Chubby是Google设计的提供粗粒度锁服务的文件系统,存储大量小文件,每个文件就代表一个锁。
Spring Integration
Spring Integration在基于Spring的应用程序中实现轻量级消息传递,并支持通过声明适配器与外部系统集成。 Spring Integration的主要目标是提供一个简单的模型来构建企业集成解决方案,同时保持关注点的分离,这对于生成可维护,可测试的代码至关重要。我们熟知的
Spring Cloud Stream的底层就是Spring Integration。
Spring Integration提供的全局锁目前为如下存储提供了实现:
- Gemfire
- JDBC
- Redis
- Zookeeper
总结
无论你身处一个什么样的公司,最开始的工作可能都需要从最简单的做起。不要提阿里和腾讯的业务场景 qps 如何大,因为在这样的大场景中你未必能亲自参与项目,亲自参与项目未必能是核心的设计者,是核心的设计者未必能独自设计。希望大家能根据自己公司业务场景,选择适合自己项目的方案。
参考文章
网友评论