1. RANK
- 分组创建rank, row_number()是没有并列的
SELECT [order_details_id]
,[order_id]
,[pizza_id]
,[quantity]
,[order_date]
,[unit_price]
,[total_price]
,[pizza_name]
,ROW_NUMBER() OVER(partition by order_id order by total_price desc) rank_by_id
FROM [sales].[dbo].[pizza_sales]
image.png
2. 前后和当前行的总和
image.png
CREATE TABLE day_sales (
ID INT,
sale_day DATE,
total_sale INT
);
INSERT INTO day_sales (ID, Date, Sales)
VALUES
(1, '2022-06-22', 603),
(2, '2022-06-21', 478),
(3, '2022-06-20', 679),
(4, '2022-06-19', 443),
(5, '2022-06-18', 540),
(6, '2022-06-17', 740),
(7, '2022-06-16', 850),
(8, '2022-06-15', 604),
(9, '2022-06-14', 339),
(10, '2022-06-13', 905);
- 指定窗口的范围,它按照日期升序排序,并包含了当前行及其前后一行的数据。
SELECT *, SUM(Sales) OVER (ORDER BY DATE ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS Rolling_Sum
FROM [sales].[dbo].[day_sales];
3. First value和 last value
SELECT *, FIRST_VALUE(Sales) OVER(PARTITION BY State order by Date) First_sales
,LAST_VALUE(Sales) OVER(PARTITION BY State order by Date rows between unbounded preceding and unbounded following) Last_sales
FROM [sales_info_01]
image.png
- 移动平均值 moving average
select *, avg(sales) over(order by dateTime rows between 2 preceding and current row) as three_days_rolling_avgs,
avg(sales) over (order by dateTime rows between 6 preceding and current row) as seven_days_rolling_avgs
网友评论