美文网首页
4.1 NumPy的ndarray:一种多维数组对象

4.1 NumPy的ndarray:一种多维数组对象

作者: 米小河123 | 来源:发表于2019-11-22 05:52 被阅读0次

    Numpy(Numerical Python的简称)是Python数值计算最重要的基础包。大多数提供科学计算的包都是用Numpy的数组作为构建基础。
    Numpy的部分功能如下:

    • ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组。
    • 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。
    • 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。
    • 线性代数、随机数生成以及傅里叶变换功能。
    • 用于集成由C、C++、Fortran等语言编写的代码的A C API。

    由于Numpy提供了一个简单易用的C API,因此很容易将数据传递给由低级语言编写的外部库,外部库也能以Numpy数组的形式将数据返回给Python。这个功能使Python成为一种包装C/C++/Fortran历史代码库的选择,并使被包装库拥有一个动态的、易用的接口。

    Numpy本身并没有提供多么高级的数据分析功能,理解Numpy数组以及面向数组的计算将有助于你更加高效地使用诸如pandas之类的工具。因为Numpy是一个很大的题目,我会在附录A中介绍更多Numpy高级功能,比如广播。
    对于大部分数据分析应用而言,我最关注的功能主要集中在:

    • 用于数据整理和清理、子集构造和过滤、转换等快速的矢量化数组运算。
    • 常用的数组算法,如排序、唯一化、集合运算等。
    • 高效的描述统计和数据聚合/摘要运算。
    • 用于异构数据集的合并/连接运算的数据对齐和关系型数据运算。
    • 将条件逻辑表述为数组表达式(而不是带有if-elif-else分支的循环)。
    • 数据的分组运算(聚合、转换、函数应用等)。

    虽然Numpy提供了通用的数值数据处理的计算基础,但大多数读者可能还是想将pandas作为统计和分析工作的基础,尤其是处理表格数据时。pandas还提供了一些Numpy所没有的领域特定的功能,如时间序列处理等。
    Numpy之于数值计算特别重要的原因之一,时因为它可以高效处理大数组的数据。这是因为:

    • Numpy是在一个连续的内存块中存储数据,独立于其他Python内置对象。Numpy的C语言编写的算法库可以操作内存,而不必进行类型检查或其它前期工作。比起Python的内置序列,Numpy数组使用的内存更少。
    • Numpy可以在整个数组上进行复杂的计算,而不需要Python的for循环。

    要搞明白具体的性能差距,考察一个包含一百万整数的数组,和一个等价的Python列表:

    In [7]: import numpy as np
    
    In [8]: my_arr = np.arange(1000000)
    
    In [9]: my_list = list(range(1000000))
    

    各个序列分别乘以2:

    In [10]: %time for _ in range(10): my_arr2 = my_arr * 2
    CPU times: user 20 ms, sys: 50 ms, total: 70 ms
    Wall time: 72.4 ms
    
    In [11]: %time for _ in range(10): my_list2 = [x * 2 for x in my_list]
    CPU times: user 760 ms, sys: 290 ms, total: 1.05 s
    Wall time: 1.05 s
    

    基于Numpy的算法要比纯Python块10到100倍(甚至更快),并且使用的内存更少。

    Numpy最重要的一个特点就是其N维数组对象(即ndarray),该对象是一个快速而灵活的大数据集容器。你可以利用这种数组对整块数据执行一些数学运算,其语法跟标量元素之间的运算一样。

    要明白Python是如何利用与标量值类似的语法进行批次计算,我先引入Numpy,然后生成一个包含随机数据的小数组:

    In [12]: import numpy as np
    
    # Generate some random data
    In [13]: data = np.random.randn(2, 3)
    
    In [14]: data
    Out[14]: 
    array([[-0.2047,  0.4789, -0.5194],
           [-0.5557,  1.9658,  1.3934]])
    

    然后进行数学运算:

    In [15]: data * 10
    Out[15]: 
    array([[ -2.0471,   4.7894,  -5.1944],
           [ -5.5573,  19.6578,  13.9341]])
    
    In [16]: data + data
    Out[16]: 
    array([[-0.4094,  0.9579, -1.0389],
           [-1.1115,  3.9316,  2.7868]])
    

    第一个例子中,所有的元素都乘以10。第二个例子中,每个元素都与自身相加。
    ndarray是一个通用的同构数据多维容器,也就是说,其中的所有元素必须是相同类型的。每个数组都有一个shape(一个表示各维度大小的元组)和一个dtype(一个用于说明数组数据类型的对象):

    In [17]: data.shape
    Out[17]: (2, 3)
    
    In [18]: data.dtype
    Out[18]: dtype('float64')
    

    创建ndarray
    创建数组最简单的办法就是使用array函数。它接受一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组。以一个列表的转换为例:

    In [19]: data1 = [6, 7.5, 8, 0, 1]
    
    In [20]: arr1 = np.array(data1)
    
    In [21]: arr1
    Out[21]: array([ 6. ,  7.5,  8. ,  0. ,  1. ])
    

    嵌套序列(比如由一组等长列表组成的列表)将会被转换成一个多维数组:

    In [22]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
    
    In [23]: arr2 = np.array(data2)
    
    In [24]: arr2
    Out[24]: 
    array([[1, 2, 3, 4],
           [5, 6, 7, 8]])
    

    因为data2是列表的列表,Numpy数组arr2的两个维度的shape是从data2引入的。可以用属性ndim和shape验证:

    In [25]: arr2.ndim
    Out[25]: 2
    
    In [26]: arr2.shape
    Out[26]: (2, 4)
    

    除非特别说明,np.array会尝试为新建的这个数组推断出一个较为合适的数据类型。数据类型保存在一个特殊的dtype对象中。比如说,在上面的两个例子中,我们有:

    In [27]: arr1.dtype
    Out[27]: dtype('float64')
    
    In [28]: arr2.dtype
    Out[28]: dtype('int64')
    

    除np.array之外,还有一些函数也可以新建数组。比如,zeros和ones分别可以创建指定长度或形状的全0或全1数组。empty可以创建一个没有任何具体值的数组。要用这些方法创建多维数组,只需传入一个表示形状的元组即可:

    In [29]: np.zeros(10)
    Out[29]: array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])
    
    In [30]: np.zeros((3, 6))
    Out[30]: 
    array([[ 0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.]])
    
    In [31]: np.empty((2, 3, 2))
    Out[31]: 
    array([[[ 0.,  0.],
            [ 0.,  0.],
            [ 0.,  0.]],
           [[ 0.,  0.],
            [ 0.,  0.],
            [ 0.,  0.]]])
    

    注意:认为np.empty会返回全0数组的想法是不安全的。很多情况下(如前所示),它返回的都是一些未初始化的垃圾值。

    arrange是Python内置函数range的数组版:

    In [32]: np.arange(15)
    Out[32]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])
    

    表4-1列出了一些数组创建函数。由于Numpy关注的是数值计算,因此,如果没有特别指定,数据类型基本都是float64(浮点数)。

    表4-1 数组创建函数.png
    ndarray的数据类型
    dtype(数据类型)是一个特殊的对象,它含有ndarray将一块内存解释为特定数据类型所需的信息:
    In [33]: arr1 = np.array([1, 2, 3], dtype=np.float64)
    
    In [34]: arr2 = np.array([1, 2, 3], dtype=np.int32)
    
    In [35]: arr1.dtype
    Out[35]: dtype('float64')
    
    In [36]: arr2.dtype
    Out[36]: dtype('int32')
    

    dtype是Numpy灵活交互其它系统的源泉之一。多数情况下,它们直接映射到相应的机器表示,这使得“读写磁盘上的二进制数据流”以及“集成低级语言代码(如C、Fortran)”等工作变得更加简单。数值型dtype的命名方式相同:一个类型名(如float或int),后面跟一个用于表示各元素位长的数字。标准的双精度浮点值(即Python的float对象)需要占用8字节(即64位)。因此,该类型在Numpy中就记作float64.表4-2列出了Numpy所支持的全部数据类型。

    你可以通过ndarray的astype方法明确地将一个数组从一个dtype转换成另一个dtype:

    In [37]: arr = np.array([1, 2, 3, 4, 5])
    
    In [38]: arr.dtype
    Out[38]: dtype('int64')
    
    In [39]: float_arr = arr.astype(np.float64)
    
    In [40]: float_arr.dtype
    Out[40]: dtype('float64')
    

    在本例中,整数被转换成了浮点数。如果将浮点数转换成整数,则小数部分将会被截取删除:

    In [41]: arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
    
    In [42]: arr
    Out[42]: array([  3.7,  -1.2,  -2.6,   0.5,  12.9,  10.1])
    
    In [43]: arr.astype(np.int32)
    Out[43]: array([ 3, -1, -2,  0, 12, 10], dtype=int32)
    

    如果某字符串数组表示的全是数字,也可以用astype将其转换为数值形式:

    In [44]: numeric_strings = np.array(['1.25', '-9.6', '42'], dtype=np.string_)
    
    In [45]: numeric_strings.astype(float)
    Out[45]: array([  1.25,  -9.6 ,  42.  ])
    

    如果转换过程因为某种原因而失败了,就会引发一个ValueError。
    数组的dtype还有另一个属性:

    In [46]: int_array = np.arange(10)
    
    In [47]: calibers = np.array([.22, .270, .357, .380, .44, .50], dtype=np.float64)
    
    In [48]: int_array.astype(calibers.dtype)
    Out[48]: array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.])
    

    你还可以用简洁的类型代码来表示dtype:

    In [49]: empty_uint32 = np.empty(8, dtype='u4')
    
    In [50]: empty_uint32
    Out[50]: 
    array([         0, 1075314688,          0, 1075707904,          0,
           1075838976,          0, 1072693248], dtype=uint32)
    

    笔记:调用astype总会创建一个新的数组(一个数据的备份),即使新的dtype与旧的dtype相同。

    Numpy数组的运算
    数组很重要,因为它使你不用编写循环即可对数据执行批量运算。Numpy用户称其为矢量化(vectorization)。大小相等的数组之间的任何算术运算都会将运算应用到元素级:

    In [51]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])
    
    In [52]: arr
    Out[52]: 
    array([[ 1.,  2.,  3.],
           [ 4.,  5.,  6.]])
    
    In [53]: arr * arr
    Out[53]: 
    array([[  1.,   4.,   9.],
           [ 16.,  25.,  36.]])
    
    In [54]: arr - arr
    Out[54]: 
    array([[ 0.,  0.,  0.],
           [ 0.,  0.,  0.]])
    

    数组与标量的算术运算会将标量值传播到各个元素:

    In [55]: 1 / arr
    Out[55]: 
    array([[ 1.    ,  0.5   ,  0.3333],
           [ 0.25  ,  0.2   ,  0.1667]])
    
    In [56]: arr ** 0.5
    Out[56]: 
    array([[ 1.    ,  1.4142,  1.7321],
           [ 2.    ,  2.2361,  2.4495]])
    

    大小相同的数组之间的比较会生成布尔值数组:

    In [57]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])
    
    In [58]: arr2
    Out[58]: 
    array([[  0.,   4.,   1.],
           [  7.,   2.,  12.]])
    
    In [59]: arr2 > arr
    Out[59]:
    array([[False,  True, False],
           [ True, False,  True]], dtype=bool)
    

    不同大小的数组之间的运算叫做广播(broadcasting)。
    基本的索引和切片
    Numpy数组的索引时一个内容丰富的主题,因为选取数据子集或单个元素的方式有很多。一维数组很简单。从表面上看,它们跟Python列表的功能差不多:

    In [60]: arr = np.arange(10)
    
    In [61]: arr
    Out[61]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    
    In [62]: arr[5]
    Out[62]: 5
    
    In [63]: arr[5:8]
    Out[63]: array([5, 6, 7])
    
    In [64]: arr[5:8] = 12
    
    In [65]: arr
    Out[65]: array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])
    

    如上所示,当你将一个标量值赋值给一个切片时(如arr[5:8] = 12),该值会自动传播(也就说后面将会讲到的“广播”)到整个选区。跟列表最重要的区别在于,数组切片是原始数组的视图。这意味着数据不会被复制,视图上的任何修改都会直接反映到源数组上。
    作为例子,先创建一个arr的切片:

    In [66]: arr_slice = arr[5:8]
    
    In [67]: arr_slice
    Out[67]: array([12, 12, 12])
    

    现在,当我修改arr_slice中的值,变动也会体现在原始数组arr中:

    In [68]: arr_slice[1] = 12345
    
    In [69]: arr
    Out[69]: array([    0,     1,     2,     3,     4,    12, 12345,    12,     8,   
      9])
    

    切片[:]会给数组中的所有值赋值:

    In [70]: arr_slice[:] = 64
    
    In [71]: arr
    Out[71]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])
    

    注意:如果你想要得到的是ndarray切片的一份副本而非视图。就需要明确地进行复制操作,例如arr[5:8].copy()。

    对于高维度数组,能做的事情更多。在一个二维数组中,各索引位置上的元素不再是标量而是一维数组:

    In [72]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    
    In [73]: arr2d[2]
    Out[73]: array([7, 8, 9])
    

    因此,可以对各个元素进行递归访问,但这样需要做的事情有点多。你可以传入一个以逗号隔开的索引列表来选取单个元素。也就是说,下面两种方式是等价的:

    In [74]: arr2d[0][2]
    Out[74]: 3
    
    In [75]: arr2d[0, 2]
    Out[75]: 3
    

    图4-1说明了二维数组的索引方式。轴0作为行,轴1作为列。


    图4-1 Numpy数组中的元素索引.png

    在多维数组中,如果省略了后面的索引,则返回对象会是一个维度低一点的ndarray(它含有高一级维度上的所有数据)。因此,在2×2×3数组arr3d中:

    In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
    
    In [77]: arr3d
    Out[77]: 
    array([[[ 1,  2,  3],
            [ 4,  5,  6]],
           [[ 7,  8,  9],
            [10, 11, 12]]])
    

    arr3d[0]是一个2*3数组:

    In [78]: arr3d[0]
    Out[78]: 
    array([[1, 2, 3],
           [4, 5, 6]])
    

    标量值和数组都可以被赋值给arr3d[0]:

    In [79]: old_values = arr3d[0].copy()
    
    In [80]: arr3d[0] = 42
    
    In [81]: arr3d
    Out[81]: 
    array([[[42, 42, 42],
            [42, 42, 42]],
           [[ 7,  8,  9],
            [10, 11, 12]]])
    
    In [82]: arr3d[0] = old_values
    
    In [83]: arr3d
    Out[83]: 
    array([[[ 1,  2,  3],
            [ 4,  5,  6]],
           [[ 7,  8,  9],
            [10, 11, 12]]])
    

    相似的,arr3d[1,0]可以访问索引以(1,0)开头的那些值(以一维数组的形式返回):

    In [84]: arr3d[1, 0]
    Out[84]: array([7, 8, 9])
    

    虽然是用两步进行索引的,表达式是相同的:

    In [85]: x = arr3d[1]
    
    In [86]: x
    Out[86]: 
    array([[ 7,  8,  9],
           [10, 11, 12]])
    
    In [87]: x[0]
    Out[87]: array([7, 8, 9])
    

    注意,在上面所有这些选取数组子集的例子中,返回的数组都是视图。
    切片索引
    ndarray的切片语法跟Python列表的一维对象差不多:

    In [88]: arr
    Out[88]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])
    
    In [89]: arr[1:6]
    Out[89]: array([ 1,  2,  3,  4, 64])
    

    对于之前的二维数组arr2d,其切片方式稍显不同:

    In [90]: arr2d
    Out[90]: 
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])
    
    In [91]: arr2d[:2]
    Out[91]: 
    array([[1, 2, 3],
           [4, 5, 6]])
    

    可以看出,它是沿着第0轴(即第一个轴)切片的。也就是说,切片是沿着一个轴向选取元素的。表达式arr2d[:2]可以被认为是“选取arr2d的前两行”。
    你可以一次传入多个切片,就像传入多个索引那样:

    In [92]: arr2d[:2, 1:]
    Out[92]: 
    array([[2, 3],
           [5, 6]])]
    

    像这样进行切片时,只能得到相同维数的数组视图。通过将整数索引和切片混合,可以得到低维度的切片。

    例如,我可以选取第二行的前两列:

    In [93]: arr2d[1, :2]
    Out[93]: array([4, 5])
    

    相似的,还可以选择第三列的前两行:

    In [94]: arr2d[:2, 2]
    Out[94]: array([3, 6])
    

    图4-2对此进行了说明。注意,“只有冒号”表示选取整个轴,因此你可以像下面这样只对高维轴进行切片:

    In [95]: arr2d[:, :1]
    Out[95]: 
    array([[1],
           [4],
           [7]])
    
    图4-2 二维数组切片.png

    自然,对切片表达式的赋值操作也会被扩散到整个选区:

    In [96]: arr2d[:2, 1:] = 0
    
    In [97]: arr2d
    Out[97]: 
    array([[1, 0, 0],
           [4, 0, 0],
           [7, 8, 9]])
    

    布尔型索引
    来看这样一个例子,假设我们有一个用于存储数据的数组以及一个存储姓名的数组(含有重复项)。在这里,我将使用numpy.random中的randn函数生成一些正态分布的随机数据:

    In [98]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
    
    In [99]: data = np.random.randn(7, 4)
    
    In [100]: names
    Out[100]: 
    array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'],
          dtype='<U4')
    
    In [101]: data
    Out[101]: 
    array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
           [ 1.0072, -1.2962,  0.275 ,  0.2289],
           [ 1.3529,  0.8864, -2.0016, -0.3718],
           [ 1.669 , -0.4386, -0.5397,  0.477 ],
           [ 3.2489, -1.0212, -0.5771,  0.1241],
           [ 0.3026,  0.5238,  0.0009,  1.3438],
           [-0.7135, -0.8312, -2.3702, -1.8608]])
    

    假设每个名字都对应data数组中的一行,而我们想要选出对应于名字“BOb”的所有行。跟算术运算一样,数组的比较运算(如==)也是矢量化的。因此,对names和字符串“Bob”的比较运算将会产生一个布尔型数组:

    In [102]: names == 'Bob'
    Out[102]: array([ True, False, False,  True, False, False, False], dtype=bool)
    

    这个布尔型数组可用于数组索引:

    In [103]: data[names == 'Bob']
    Out[103]: 
    array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
           [ 1.669 , -0.4386, -0.5397,  0.477 ]])
    

    布尔型数组的长度必须跟被索引的轴长度一致。此外,还可以将布尔型数组跟切片、整数(或整数序列,稍后将对此进行详细讲解)混合使用:

    In [103]: data[names == 'Bob']
    Out[103]: 
    array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
           [ 1.669 , -0.4386, -0.5397,  0.477 ]])
    

    注意:如果布尔型数组的长度不对,布尔型选择就会出错,因此一定要小心。

    下面的例子,我选取了names == 'Bob'的行,并索引了列:

    In [104]: data[names == 'Bob', 2:]
    Out[104]: 
    array([[ 0.769 ,  1.2464],
           [-0.5397,  0.477 ]])
    
    In [105]: data[names == 'Bob', 3]
    Out[105]: array([ 1.2464,  0.477 ])
    

    要选择除“Bob”以外的其他值,既可以使用不等号(!=),也可以通过~对条件进行否定:

    In [106]: names != 'Bob'
    Out[106]: array([False,  True,  True, False,  True,  True,  True], dtype=bool)
    
    In [107]: data[~(names == 'Bob')]
    Out[107]:
    array([[ 1.0072, -1.2962,  0.275 ,  0.2289],
           [ 1.3529,  0.8864, -2.0016, -0.3718],
           [ 3.2489, -1.0212, -0.5771,  0.1241],
           [ 0.3026,  0.5238,  0.0009,  1.3438],
           [-0.7135, -0.8312, -2.3702, -1.8608]])
    

    ~操作符用来反转条件很好用:

    In [108]: cond = names == 'Bob'
    
    In [109]: data[~cond]
    Out[109]: 
    array([[ 1.0072, -1.2962,  0.275 ,  0.2289],
           [ 1.3529,  0.8864, -2.0016, -0.3718],
           [ 3.2489, -1.0212, -0.5771,  0.1241],
           [ 0.3026,  0.5238,  0.0009,  1.3438],
           [-0.7135, -0.8312, -2.3702, -1.8608]])
    

    选取这三个名字中的两个需要组合应用多个布尔条件,使用&(和)、|(或)之类的布尔算术运算符即可:

    In [110]: mask = (names == 'Bob') | (names == 'Will')
    
    In [111]: mask
    Out[111]: array([ True, False,  True,  True,  True, False, False], dtype=bool)
    
    In [112]: data[mask]
    Out[112]: 
    array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
           [ 1.3529,  0.8864, -2.0016, -0.3718],
           [ 1.669 , -0.4386, -0.5397,  0.477 ],
           [ 3.2489, -1.0212, -0.5771,  0.1241]])
    

    通过布尔型索引选取数组中的数据,将总是创建数据的副本,即使返回一模一样的数组也是如此。

    注意:Python关键字and和or在布尔型数组中无效。要使用& 与|。

    通过布尔型数组设置值是一种经常用到的手段。为了将data中的所有负值都设置为0,我们只需:

    In [113]: data[data < 0] = 0
    
    In [114]: data
    Out[114]: 
    array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
           [ 1.0072,  0.    ,  0.275 ,  0.2289],
           [ 1.3529,  0.8864,  0.    ,  0.    ],
           [ 1.669 ,  0.    ,  0.    ,  0.477 ],
           [ 3.2489,  0.    ,  0.    ,  0.1241],
           [ 0.3026,  0.5238,  0.0009,  1.3438],
           [ 0.    ,  0.    ,  0.    ,  0.    ]])
    

    通过一维布尔数组设置整行或列的值也很简单:

    In [115]: data[names != 'Joe'] = 7
    
    In [116]: data
    Out[116]: 
    array([[ 7.    ,  7.    ,  7.    ,  7.    ],
           [ 1.0072,  0.    ,  0.275 ,  0.2289],
           [ 7.    ,  7.    ,  7.    ,  7.    ],
           [ 7.    ,  7.    ,  7.    ,  7.    ],
           [ 7.    ,  7.    ,  7.    ,  7.    ],
           [ 0.3026,  0.5238,  0.0009,  1.3438],
           [ 0.    ,  0.    ,  0.    ,  0.    ]])
    

    后面会看到,这类二维数据的操作也可以用pandas方便的来处理。
    花式索引
    花式索引(Fancy indexing)是一个Numpy术语,它指的是利用整数数组进行索引。假设我们有一个8×4数组:

    In [117]: arr = np.empty((8, 4))
    
    In [118]: for i in range(8):
       .....:     arr[i] = i
    
    In [119]: arr
    Out[119]: 
    array([[ 0.,  0.,  0.,  0.],
           [ 1.,  1.,  1.,  1.],
           [ 2.,  2.,  2.,  2.],
           [ 3.,  3.,  3.,  3.],
           [ 4.,  4.,  4.,  4.],
           [ 5.,  5.,  5.,  5.],
           [ 6.,  6.,  6.,  6.],
           [ 7.,  7.,  7.,  7.]])
    

    为了以特定顺序选取行子集,只需传入一个用于指定顺序的整数列表或ndarray即可:

    In [120]: arr[[4, 3, 0, 6]]
    Out[120]: 
    array([[ 4.,  4.,  4.,  4.],
           [ 3.,  3.,  3.,  3.],
           [ 0.,  0.,  0.,  0.],
           [ 6.,  6.,  6.,  6.]])
    

    这段代码确实达到我们的要求了,使用负数索引将会从末尾开始选取行:

    In [121]: arr[[-3, -5, -7]]
    Out[121]: 
    array([[ 5.,  5.,  5.,  5.],
           [ 3.,  3.,  3.,  3.],
           [ 1.,  1.,  1.,  1.]])
    

    一次传入多个索引数组会有一点特别。它返回的是一个一维数组,其中的元素对应各个索引元祖:

    In [122]: arr = np.arange(32).reshape((8, 4))
    
    In [123]: arr
    Out[123]: 
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11],
           [12, 13, 14, 15],
           [16, 17, 18, 19],
           [20, 21, 22, 23],
           [24, 25, 26, 27],
           [28, 29, 30, 31]])
    
    In [124]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
    Out[124]: array([ 4, 23, 29, 10])
    

    最终选出的是元素(1,0)、(5,3)、(7,1)和(2,2)。无论数组是多少维的,花式索引总是一维的。
    这个花式索引的行为可能会跟某些用户的预期不一样,选取矩阵的行列子集应该是矩形区域的形式才对。下面是得到该结果的一个办法:

    In [125]: arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]]
    Out[125]: 
    array([[ 4,  7,  5,  6],
           [20, 23, 21, 22],
           [28, 31, 29, 30],
           [ 8, 11,  9, 10]])
    

    花式索引跟切片不一样,它总是将数据复制到新数组中。
    数组转置和轴对换
    转置是重塑的一种特殊形式,它返回的是源数据的视图(不会进行任何复制操作)。数组不仅有transpose方法,还有一个特殊的T属性:

    In [126]: arr = np.arange(15).reshape((3, 5))
    
    In [127]: arr
    Out[127]: 
    array([[ 0,  1,  2,  3,  4],
           [ 5,  6,  7,  8,  9],
           [10, 11, 12, 13, 14]])
    
    In [128]: arr.T
    Out[128]: 
    array([[ 0,  5, 10],
           [ 1,  6, 11],
           [ 2,  7, 12],
           [ 3,  8, 13],
           [ 4,  9, 14]])
    

    在进行矩阵计算时,经常需要用到该操作,比如利用np.dot计算矩阵内积:

    In [129]: arr = np.random.randn(6, 3)
    
    In [130]: arr
    Out[130]: 
    array([[-0.8608,  0.5601, -1.2659],
           [ 0.1198, -1.0635,  0.3329],
           [-2.3594, -0.1995, -1.542 ],
           [-0.9707, -1.307 ,  0.2863],
           [ 0.378 , -0.7539,  0.3313],
           [ 1.3497,  0.0699,  0.2467]])
    
    In [131]: np.dot(arr.T, arr)
    Out[131]:
    array([[ 9.2291,  0.9394,  4.948 ],
           [ 0.9394,  3.7662, -1.3622],
           [ 4.948 , -1.3622,  4.3437]])
    

    对于高维数组,transpose需要得到一个由轴编号组成的元祖才能对这些轴进行转置:

    In [132]: arr = np.arange(16).reshape((2, 2, 4))
    
    In [133]: arr
    Out[133]: 
    array([[[ 0,  1,  2,  3],
            [ 4,  5,  6,  7]],
           [[ 8,  9, 10, 11],
            [12, 13, 14, 15]]])
    
    In [134]: arr.transpose((1, 0, 2))
    Out[134]: 
    array([[[ 0,  1,  2,  3],
            [ 8,  9, 10, 11]],
           [[ 4,  5,  6,  7],
            [12, 13, 14, 15]]])
    

    这里,第一个轴被换成了第二个,第二个轴被换成了第一个,最后一个轴不变。
    简单的转置可以使用.T,它其实就是进行轴对换而已。ndarray还有一个swapaxes方法,它需要接受一对轴编号:

    In [135]: arr
    Out[135]: 
    array([[[ 0,  1,  2,  3],
            [ 4,  5,  6,  7]],
           [[ 8,  9, 10, 11],
            [12, 13, 14, 15]]])
    
    In [136]: arr.swapaxes(1, 2)
    Out[136]: 
    array([[[ 0,  4],
            [ 1,  5],
            [ 2,  6],
            [ 3,  7]],
           [[ 8, 12],
            [ 9, 13],
            [10, 14],
            [11, 15]]])
    

    swapaaxes也是返回源数据的视图(不会进行任何复制操作)。

    相关文章

      网友评论

          本文标题:4.1 NumPy的ndarray:一种多维数组对象

          本文链接:https://www.haomeiwen.com/subject/xsnoictx.html