Apache Flink是什么?
Apache Flink 是一个框架和分布式处理引擎,用于在无边界和有边界数据流上进行有状态的计算。Flink 能在所有常见集群环境中运行,并能以内存速度和任意规模进行计算。
Flink 主要包括 DataStream API、DataSet API、Table API、SQL、Graph API 和 FlinkML 等。现在 Flink 也有自己的生态圈,涉及离线数据处理、实时数据处理、SQL 操作、图计算和机器学习库等。
Flink 的重要特点
(1)事件驱动型(Event-driven)
事件驱动型应用是一类具有状态的应用,它从一个或多个事件流提取数据,并根据到来的事件触发计算、状态更新或其他外部动作。比较典型的就是以 kafka 为代表的消息队列几乎都是事件驱动型应用。
与之不同的就是 SparkStreaming 微批次,如图:
image.png事件驱动型:
image.png(2)流与批的世界观
批处理的特点是有界、持久、大量,非常适合需要访问全套记录才能完成的计算工作,一般用于离线统计。
流处理的特点是无界、实时, 无需针对整个数据集执行操作,而是对通过系统传输的每个数据项执行操作,一般用于实时统计。 在 spark 的世界观中,一切都是由批次组成的,离线数据是一个大批次,而实时数据是由一个一个无限的小批次组成的。
而在 flink 的世界观中,一切都是由流组成的,离线数据是有界限的流,实时数据是一个没有界限的流,这就是所谓的有界流和无界流。
无界数据流:无界数据流有一个开始但是没有结束,它们不会在生成时终止并 提供数据,必须连续处理无界流,也就是说必须在获取后立即处理 event。对于无界数据流我们无法等待所有数据都到达,因为输入是无界的,并且在任何时间点都不会完成。处理无界数据通常要求以特定顺序(例如事件发生的顺序)获取 event,以便能够推断结果完整性。
有界数据流:有界数据流有明确定义的开始和结束,可以在执行任何计算之前通过获取所有数据来处理有界流,处理有界流不需要有序获取,因为可以始终对有界数据集进行排序,有界流的处理也称为批处理。
(3) 分层 api
image.png最底层级的抽象仅仅提供了有状态流,它将通过过程函数(Process Function) 被嵌入到 DataStream API 中。底层过程函数(Process Function) 与 DataStream API 相集成,使其可以对某些特定的操作进行底层的抽象,它允许用户可以自由地处理 来自一个或多个数据流的事件,并使用一致的容错的状态。除此之外,用户可以注册事件时间并处理时间回调,从而使程序可以处理复杂的计算。 实际上,大多数应用并不需要上述的底层抽象,而是针对核心 API(Core APIs) 进行编程,比如 DataStream API(有界或无界流数据)以及 DataSet API(有界数据 集)。这些 API 为数据处理提供了通用的构建模块,比如由用户定义的多种形式的
转换(transformations),连接(joins),聚合(aggregations),窗口操作(windows) 等等。DataSet API 为有界数据集提供了额外的支持,例如循环与迭代。这些 API处理的数据类型以类(classes)的形式由各自的编程语言所表示。
Table API 是以表为中心的声明式编程,其中表可能会动态变化(在表达流数据时)。Table API 遵循(扩展的)关系模型:表有二维数据结构(schema)(类似于关系数据库中的表),同时 API 提供可比较的操作,例如 select、project、join、group-by、aggregate 等。Table API 程序声明式地定义了什么逻辑操作应该执行,而不是准确地确定这些操作代码的看上去如何。
尽管 Table API 可以通过多种类型的用户自定义函数(UDF)进行扩展,其仍不如核心 API 更具表达能力,但是使用起来却更加简洁(代码量更少)。除此之外,Table API 程序在执行之前会经过内置优化器进行化。你可以在表与DataStream/DataSet 之间无缝切换,以允许程序将 Table API 与DataStream 以及 DataSet 混合使用。Flink 提供的最高层级的抽象是 SQL 。这一层抽象在语法与表达能力上与Table API 类似,但是是以 SQL 查询表达式的形式表现程序。SQL 抽象与 Table API交互密切,同时 SQL 查询可以直接在 Table API 定义的表上执行。
Flink 几大模块
- Flink Table & SQL
- Flink Gelly(图计算)
- Flink CEP(复杂事件处理)
Flink应用场景
- 电信市场营销
- 数据报表,广告投放,业务流程需求
- 物联网
- 传感器实时采集和显示、实时报警、交通运输业
- 电信业
- 基站流量调配
- 银行金融
- 实时计算和通知推送,实时检测异常行为
Flink部署
Flink standalone模式安装部署,首先到官网!下载页面下载,解压安装
进入conf目录打开flink-conf.yaml 进行编辑
进入bin目录 ,单机模式下使用Standalone 模式
.\start-cluster.bat
打开浏览器访问 http://locahost:8081 对 flink 集群和任务进行监控管理
Flink 架构
Flink运行时架构主要包括四个不同的组件,它们会在运行流处理应用程序时协同工作:作业管理器(JobManager)、资源管理器(ResourceManager)、任务管理器(TaskManager),以及分发器(Dispatcher)。因为Flink是用Java和Scala实现的,所以所有组件都会运行在Java虚拟机上。每个组件的职责如下:
作业管理器(JobManager)
- 控制一个应用程序执行的主进程,也就是说,每个应用程序都会被一个不同的JobManager 所控制执行。
- JobManager 会先接收到要执行的应用程序,这个应用程序会包括:作业图(JobGraph)、逻辑数据流图(logical dataflow graph)和打包了所有的类、库和其它资源的JAR包。
- JobManager 会把JobGraph转换成一个物理层面的数据流图,这个图被叫做“执行图”(ExecutionGraph),包含了所有可以并发执行的任务。
- JobManager 会向资源管理器(ResourceManager)请求执行任务必要的资源,也就是任务管理器(TaskManager)上的插槽(slot)。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的 TaskManager上。而在运行过程中,JobManager会负责所有需要中央协调的操作,比如说检查点(checkpoints)的协调。
任务管理器(TaskManager)
- Flink中的工作进程。通常在Flink中会有多个TaskManager运行,每一个TaskManager都包含了一定数量的插槽(slots)。插槽的数量限制了TaskManager能够执行的任务数量。
- 启动之后,TaskManager会向资源管理器注册它的插槽;收到资源管理器的指令后,TaskManager就会将一个或者多个插槽提供给JobManager调用。JobManager就可以向插槽分配任务(tasks)来执行了。
- 在执行过程中,一个TaskManager可以跟其它运行同一应用程序的TaskManager交换数据。
资源管理器(ResourceManager)
- 主要负责管理任务管理器(TaskManager)的插槽(slot),TaskManger 插槽是Flink中定义的处理资源单元。
- Flink为不同的环境和资源管理工具提供了不同资源管理器,比如YARN、Mesos、K8s,以及standalone部署。
- 当JobManager申请插槽资源时,ResourceManager会将有空闲插槽的TaskManager分配给JobManager。如果ResourceManager没有足够的插槽来满足JobManager的请求,它还可以向资源提供平台发起会话,以提供启动TaskManager进程的容器。
分发器(Dispatcher)
- 可以跨作业运行,它为应用提交提供了REST接口。
- 当一个应用被提交执行时,分发器就会启动并将应用移交给一个JobManager。
- Dispatcher也会启动一个Web UI,用来方便地展示和监控作业执行的信息。
- Dispatcher在架构中可能并不是必需的,这取决于应用提交运行的方式。
任务提交流程
这是从一个较为高层级的视角,来看应用中各组件的交互协作。如果部署的集群环境不同(例如YARN,Mesos,Kubernetes,standalone等),其中一些步骤可以被省略,或是有些组件会运行在同一个JVM进程中。
image.png
命令行提交job
bin/flink run -c <入口类> -p <并行度> <jar包路径> <启动参数>
$ bin/flink run -c ** WordCount -p 3 **.jar --host localhost --port 7777
Job has been submitted with JobID 33a5d1f00688a362837830f0b85fd75e
取消任务
bin/flink cancel <Job的ID>
Yarn模式任务提交流程
- Flink任务提交后,Client向HDFS上传Flink的Jar包和配置
- 之后客户端向Yarn ResourceManager提交任务,ResourceManager分配Container资源并通知对应的NodeManager启动ApplicationMaster
- ApplicationMaster启动后加载Flink的Jar包和配置构建环境,去启动JobManager,之后JobManager向Flink自身的RM进行申请资源,自身的RM向Yarn 的ResourceManager申请资源(因为是yarn模式,所有资源归yarn RM管理)启动TaskManager
- Yarn ResourceManager分配Container资源后,由ApplicationMaster通知资源所在节点的NodeManager启动TaskManager
-
NodeManager加载Flink的Jar包和配置构建环境并启动TaskManager,TaskManager启动后向JobManager发送心跳包,并等待JobManager向其分配任务。
image.png
创建项目
搭建maven项目
mvn archetype:generate -DarchetypeGroupId=org.apache.flink -DarchetypeArtifactId=flink-quickstart-java -DarchetypeVersion=1.9.0
创建一个简单工程去坐单词数量统计的工程,根据空格统计单词数量
public class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {
@Override
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
String[] tokens = value.toLowerCase().split(" ");
for (String token : tokens) {
if (token.length() > 0) {
out.collect(new Tuple2<>(token, 1));
}
}
}
}
WordCount
public class WordCount {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> text = env.fromElements("").name("in-memory-input");
DataStream<Tuple2<String, Integer>> counts =
// The text lines read from the source are split into words
// using a user-defined function. The tokenizer, implemented below,
// will output each word as a (2-tuple) containing (word, 1)
text.flatMap(new Tokenizer())
.name("tokenizer")
// keyBy groups tuples based on the "0" field, the word.
// Using a keyBy allows performing aggregations and other
// stateful transformations over data on a per-key basis.
// This is similar to a GROUP BY clause in a SQL query.
.keyBy(value -> value.f0)
// For each key, we perform a simple sum of the "1" field, the count.
// If the input data stream is bounded, sum will output a final count for
// each word. If it is unbounded, it will continuously output updates
// each time it sees a new instance of each word in the stream.
.sum(1)
.name("counter");
counts.print().name("print-sink");
env.execute("WordCount");
}
}
程序与数据流
1.所有的Flink程序都是由三部分组成的: Source 、Transformation 和 Sink。
-
Source 负责读取数据源,Transformation 利用各种算子进行处理加工,Sink 负责输出
image.png - 在运行时,Flink上运行的程序会被映射成“逻辑数据流”(dataflows),它包含了这三部分
- 每一个dataflow以一个或多个sources开始以一个或多个sinks结束。dataflow类似于任意的有向无环图(DAG)
-
在大部分情况下,程序中的转换运算(transformations)跟dataflow中的算子(operator)是一一对应的关系
image.png
任务调度原理
- 客户端不是运行时和程序执行的一部分,但它用于准备并发送dataflow(JobGraph)给Master(JobManager),然后,客户端断开连接或者维持连接以等待接收计算结果。而Job Manager会产生一个执行图(Dataflow Graph)
- 当 Flink 集群启动后,首先会启动一个 JobManger 和一个或多个的 TaskManager。由 Client 提交任务给 JobManager,JobManager 再调度任务到各个 TaskManager 去执行,然后 TaskManager 将心跳和统计信息汇报给 JobManager。TaskManager 之间以流的形式进行数据的传输。上述三者均为独立的 JVM 进程。
- Client 为提交 Job 的客户端,可以是运行在任何机器上(与 JobManager 环境连通即可)。提交 Job 后,Client 可以结束进程(Streaming的任务),也可以不结束并等待结果返回。
- JobManager 主要负责调度 Job 并协调 Task 做 checkpoint,职责上很像 Storm 的 Nimbus。从 Client 处接收到 Job 和 JAR 包等资源后,会生成优化后的执行计划,并以 Task 的单元调度到各个 TaskManager 去执行。
-
TaskManager 在启动的时候就设置好了槽位数(Slot),每个 slot 能启动一个 Task,Task 为线程。从 JobManager 处接收需要部署的 Task,部署启动后,与自己的上游建立 Netty 连接,接收数据并处理。
image.png
TaskManger与Slots与parallelism
- Flink 中每一个 TaskManager 都是一个JVM进程,它可能会在独立的线程上执行一个或多个子任务
- 为了控制一个 TaskManager 能接收多少个 task, TaskManager 通过 task slot 来进行控制(一个 TaskManager 至少有一个 slot)
- 图中每个Task Manager中的Slot为3个,那么两个Task Manager一共有六个Slot, 而这6个Slot代表着Task Manager最大的并发执行能力,一共能可以执行6个task进行同时执行
- Slot是静态概念,代表着Task Manager具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots进行配置
- 为了控制一个 TaskManager 能接收多少个 task, TaskManager 通过 task slot 来进行控制(一个 TaskManager 至少有一个 slot)
- 图中Source和Map是一个Task,且并行度(我们设置的setParallelism())都为1,指这个task任务的并行能力为1,只占用一个Slot资源
————————————————
版权声明:本文为CSDN博主「SmallScorpion」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_40180229/article/details/106321149
image.png - 在第二张图中为Flink的共享子任务,如果一个TaskManager一个slot,那将意味着每个task group运行在独立的JVM中(该JVM可能是通过一个特定的容器启动的),而一个TaskManager多个slot意味着更多的subtask可以共享同一个JVM。而在同一个JVM进程中的task将共享TCP连接(基于多路复用)和心跳消息。它们也可能共享数据集和数据结构,因此这减少了每个task的负载。
-
并行度parallelism是动态概念,即TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。
image.png -
也就是说,假设一共有3个TaskManager,每一个TaskManager中的分配3个TaskSlot,也就是每个TaskManager可以接收3个task,一共9个TaskSlot,如果我们设置parallelism.default=1,即运行程序默认的并行度为1,9个TaskSlot只用了1个,有8个空闲,因此,设置合适的并行度才能提高效率。
image.png
image.png - 一个特定算子的 子任务(subtask)的个数被称之为其并行度(parallelism),我们可以对单独的每个算子进行设置并行度,也可以直接用env设置全局的并行度,更可以在页面中去指定并行度。
-
最后,由于并行度是实际Task Manager处理task 的能力,而一般情况下,一个 stream 的并行度,可以认为就是其所有算子中最大的并行度,则可以得出在设置Slot时,在所有设置中的最大设置的并行度大小则就是所需要设置的Slot的数量。
image.png
资料来源
https://blog.csdn.net/qq_40180229/article/details/106321149
https://zhuanlan.zhihu.com/p/138107079
网友评论