package Reactive;
import java.util.concurrent.Callable;
public class TimeConsumingService implements Callable<String> {
private String service_name;
private int wait_ms;
public TimeConsumingService(String name, Integer waiting, String[] depandencies) {
this.service_name = name;
this.wait_ms = waiting;
}
@Override
public String call() throws Exception {
Thread.sleep(wait_ms);
return String.format("service %s exec time is: %d ms", service_name,wait_ms);
}
}
package Reactive;
import rx.Observable;
import rx.schedulers.Schedulers;
/**
* Created by 80374563 on 2018/11/7.
*/
public class ReactiveDemo {
/**
* 案例研究:异步任务的依赖
假设我们的程序需要五个 micro-service 协作完成计算任务,这些 micro-services 之间存在数据依赖关系:
client <- fc <- fa
client <- fd <- fb
client <- fe <- fb
为了确保这些函数能并发执行,要点就是要构造足够线程,让没有依赖关系的服务在不同线程中执行。这里我们采用join 设计方法
画出数据流图;
选择流程图上的流程归并节点;
为每条归并点的一条执行路径设计一个调度者(线程);
在归并点 merge 这些路径的流。
*
*/
public static void testAsyncCompositeJoin() {
System.out.println("Prepare for execution:Async Composite Join");
long startTime = System.currentTimeMillis(); //获取开始时间
// Tasks oa -> oc, both in the same thread 1.
Observable<String> oa = Observable.just("oa").observeOn(Schedulers.io()).flatMap(
soa -> Observable.fromCallable(new TimeConsumingService("fa", 1000, new String[]{}))
);
Observable<String> oc = oa.flatMap(
(String res) -> {
System.out.println(res);
System.out.println("Executed At: " + (System.currentTimeMillis() - startTime) + "ms");
return Observable.fromCallable(
new TimeConsumingService("fc", 2000, new String[]{res}));
});
// tasks ob -> (od,oe), ob, od, oe have special thread 2,3,4.
Observable<String> ob = Observable.just("ob").observeOn(Schedulers.io()).flatMap(
sob -> Observable.fromCallable(new TimeConsumingService("fb", 2000, new String[]{}))
);
Observable<String> od_oe = ob.flatMap(
(String res) -> {
System.out.println(res);
System.out.println("Executed At: " + (System.currentTimeMillis() - startTime) + "ms");
Observable<String> od = Observable.just("od").observeOn(Schedulers.io()).flatMap(
sod -> Observable.fromCallable(new TimeConsumingService("fd", 1000, new String[]{res}))
);
Observable<String> oe = Observable.just("oe").observeOn(Schedulers.io()).flatMap(
sod -> Observable.fromCallable(new TimeConsumingService("fe", 1000, new String[]{res}))
);
return Observable.merge(od, oe);
});
System.out.println("Observable build: " + (System.currentTimeMillis() - startTime) + "ms");
// tasks join oc,(od_oe) and subscribe
Observable.merge(oc, od_oe).toBlocking().subscribe(
(res) -> {
System.out.println(res);
System.out.println("Executed At: " + (System.currentTimeMillis() - startTime) + "ms");
});
System.out.println("End executed: " + (System.currentTimeMillis() - startTime) + "ms");
}
public static void main(String[] args){
long st = System.currentTimeMillis();
testAsyncCompositeJoin();
System.out.println("done : " + (System.currentTimeMillis() - st) + " msecs");
}
}
网友评论