美文网首页
逻辑回归

逻辑回归

作者: 点滴回忆 | 来源:发表于2016-10-14 14:54 被阅读80次

最简单的回归是线性回归,线性回归是求均值,所以所有点的敏感度都一样,因此,容易被比较远的点引导走偏。所以,线性回归鲁棒性较差,采用逻辑回归。

逻辑回归的优点:靠近分界线时比较敏感,离得远时敏感度较差,所以不容易走偏。


边界的形式如下表示

构造预测函数为

表示他们为1的概率


看这个公式,当θTx 为0时,hθ(x)为1/2,也就是边界的点,当靠近边界的时候,敏感度变大。
下面为怎么通过概率影响敏感度
对于输入x分类结果为类别1和类别0的概率分别为


也就是

取似然函数为:

对数似然函数为:


最大似然估计就是求使 取最大值时的θ,其实这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数。但是,在Andrew Ng的课程中将 取为下式,即:

因为乘了一个负的系数-1/m,所以取 最小值时的θ为要求的最佳参数。

梯度下降法求的最小值
θ更新过程:



θ更新过程可以写成:

**

**

相关文章

  • 机器学习day7-逻辑回归问题

    逻辑回归 逻辑回归,是最常见最基础的模型。 逻辑回归与线性回归 逻辑回归处理的是分类问题,线性回归处理回归问题。两...

  • ML03-逻辑回归(下部分)

    本文主题-逻辑回归(下部分):逻辑回归的应用背景逻辑回归的数学基础逻辑回归的模型与推导逻辑回归算法推导梯度下降算法...

  • ML02-逻辑回归(上部分)

    本文主题-逻辑回归(上部分):逻辑回归的应用背景逻辑回归的数学基础逻辑回归的模型与推导逻辑回归算法推导梯度下降算法...

  • 逻辑回归模型

    1.逻辑回归介绍2.机器学习中的逻辑回归3.逻辑回归面试总结4.逻辑回归算法原理推导5.逻辑回归(logistic...

  • Task 01|基于逻辑回归的分类预测

    知识背景 关于逻辑回归的几个问题 逻辑回归相比线性回归,有何异同? 逻辑回归和线性回归最大的不同点是逻辑回归解决的...

  • 11. 分类算法-逻辑回归

    逻辑回归 逻辑回归是解决二分类问题的利器 逻辑回归公式 sklearn逻辑回归的API sklearn.linea...

  • 机器学习100天-Day4-6逻辑回归

    逻辑回归(Logistic Regression) 什么是逻辑回归 逻辑回归被用于对不同问题进行分类。在这里,逻辑...

  • SKlearn_逻辑回归小练习

    逻辑回归 逻辑回归(Logistic regression 或logit regression),即逻辑模型(英语...

  • R glm

    R 逻辑回归 R 怎么做逻辑回归

  • 逻辑斯蒂回归在二分类中的应用

    逻辑回归简介 逻辑斯蒂回归(logistic regression,又称“对数几率回归”)是经典的分类方法。逻辑斯...

网友评论

      本文标题:逻辑回归

      本文链接:https://www.haomeiwen.com/subject/xwmgyttx.html