美文网首页
公众号-科研私家菜学习记录(3)

公众号-科研私家菜学习记录(3)

作者: 明眸意海 | 来源:发表于2021-08-05 10:06 被阅读0次

    无序多分类Logistic回归

    • 定义:研究的因变量类型为多分类无序资料,应采用多分类无序Logistic回归模型分析。(有序多分类Logistic回归模型在调整连接函数后仍不满足平行线假设,可考虑采用多分类无序Logistic回归模型)。
      无序多分类logistic回归分析,是用于研究自变量 X 与 因变量 Y(分类变量)的一种多元回归分析法。自变量X 可以为分类变量或者连续型变量,因变量Y 为无序多分类变量,即不考虑因变量之间的等级信息,例如:职业可分为医生、教师、工程师、工人等。
      多分类无序Logistic回归模型,以某一水平因变量为参照水平,与其他水平相比建立(水平数-1)个广义Logistic模型
    1. 模型构建
    library(foreign)
    library(nnet)
    library(ggplot2)
    library(reshape2)
    ml <- read.dta("hsbdemo.dta") #hsbdemo.dta为示例数据
    with(ml, table(ses, prog))
    with(ml, do.call(rbind, tapply(write, prog, function(x) c(M = mean(x), SD = sd(x)))))
    ml$prog2 <- relevel(ml$prog, ref = "academic")
    test <- multinom(prog2 ~ ses + write, data = ml)
    summary(test)
    
    1. 统计检验
    # 2-tailed z test
    z <- summary(test)$coefficients/summary(test)$standard.errors 
    z
    # (Intercept)  sesmiddle   seshigh     write
    # general     2.445214 -1.2018081 -2.261334 -2.705562
    # vocation    4.484769  0.6116747 -1.649967 -5.112689
    p <- (1 - pnorm(abs(z), 0, 1)) * 2
    
    1. 模型预测
    # extract the coefficients from the model and exponentiate
    exp(coef(test))
    # (Intercept) sesmiddle   seshigh     write
    # general     17.32582 0.5866769 0.3126026 0.9437172
    # vocation   184.61262 1.3382809 0.3743123 0.8926116
    head(pp <- fitted(test))
    
    dses <- data.frame(ses = c("low", "middle", "high"), write = mean(ml$write))
    predict(test, newdata = dses, "probs")
    
    dwrite <- data.frame(ses = rep(c("low", "middle", "high"), each = 41), write = rep(c(30:70),3))
    
    # store the predicted probabilities for each value of ses and write
    pp.write <- cbind(dwrite, predict(test, newdata = dwrite, type = "probs", se = TRUE))
    
    # calculate the mean probabilities within each level of ses
    by(pp.write[, 3:5], pp.write$ses, colMeans)
    
    #melt data set to long for ggplot2
    lpp <- melt(pp.write, id.vars = c("ses", "write"), value.name = "probability")
    head(lpp)  # view first few rows
    
    ggplot(lpp, aes(x = write, y = probability, colour = ses)) + geom_line() + facet_grid(variable ~., scales = "free")
    

    等级(有序多分类)Logistic回归

    • 有序多分类的Logistic回归原理是将因变量的多个分类依次分割为多个二元的Logistic回归,例如本例中因变量“本国的税收过高”的赞同程度有4个等级,分析时拆分为三个二元Logistic回归,分别为(0 vs 1+2+3) 、(0+1 vs 2+3)、(0+1+2 vs 3),均是较低级与较高级对比。
    • 在有序多分类Logistic回归中,假设几个二元Logistic回归中,自变量的系数相等,仅常数项不等,结果也只输出一组自变量的系数。因此,有序多分类的Logistic回归模型,必须对自变量系数相等的假设(即“比例优势”假设)进行检验(又称平行线检验)。如果不满足该假设,则考虑使用无序多分类Logistic回归。
    • R包实现: MASS
    dat <- read.dta("ologit.dta") #ologit.dta 为数据集
    head(dat)
    ## one at a time, table apply, pared, and public
    lapply(dat[, c("apply", "pared", "public")], table)
    ## three way cross tabs (xtabs) and flatten the table
    ftable(xtabs(~ public + apply + pared, data = dat))
    summary(dat$gpa)
    sd(dat$gpa)
    
    ggplot(dat, aes(x = apply, y = gpa)) +
      geom_boxplot(size = .75) +
      geom_jitter(alpha = .5) +
      facet_grid(pared ~ public, margins = TRUE) +
      theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))
    
    • 模型构建:
    ## fit ordered logit model and store results 'm'
    m <- polr(apply ~ pared + public + gpa, data = dat, Hess=TRUE)
    ## view a summary of the model
    summary(m)
    
    • 模型评估:
    ## store table
    (ctable <- coef(summary(m)))
    ## calculate and store p values
    p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
    ## combined table
    (ctable <- cbind(ctable, "p value" = p))
    
    (ci <- confint(m)) # default method gives profiled CIs
    confint.default(m) # CIs assuming normality
    ## odds ratios
    exp(coef(m))
    ## OR and CI
    exp(cbind(OR = coef(m), ci))
    
    
    sf <- function(y) {
      c('Y>=1' = qlogis(mean(y >= 1)),
        'Y>=2' = qlogis(mean(y >= 2)),
        'Y>=3' = qlogis(mean(y >= 3)))
    }
    (s <- with(dat, summary(as.numeric(apply) ~ pared + public + gpa, fun=sf)))
    
    glm(I(as.numeric(apply) >= 2) ~ pared, family="binomial", data = dat)
    
    glm(I(as.numeric(apply) >= 3) ~ pared, family="binomial", data = dat)
    
    s[, 4] <- s[, 4] - s[, 3]
    s[, 3] <- s[, 3] - s[, 3]
    s # print
    
    plot(s, which=1:3, pch=1:3, xlab='logit', main=' ', xlim=range(s[,3:4]))
    
    newdat <- data.frame(
      pared = rep(0:1, 200),
      public = rep(0:1, each = 200),
      gpa = rep(seq(from = 1.9, to = 4, length.out = 100), 4))
    newdat <- cbind(newdat, predict(m, newdat, type = "probs"))
    
    ##show first few rows
    head(newdat)
    
    lnewdat <- melt(newdat, id.vars = c("pared", "public", "gpa"),
                    variable.name = "Level", value.name="Probability")
    ## view first few rows
    head(lnewdat)
    
    ggplot(lnewdat, aes(x = gpa, y = Probability, colour = Level)) +
      geom_line() + facet_grid(pared ~ public, labeller="label_both")
    

    相关文章

      网友评论

          本文标题:公众号-科研私家菜学习记录(3)

          本文链接:https://www.haomeiwen.com/subject/xwuuvltx.html