多线程
一些基本概念
进程和线程
- 进程:
正在运行的程序,是系统进行资源分配和调用的独立单位。
每一个进程都有它自己的内存空间和系统资源。 - 线程:
是进程中的单个顺序控制流,是一条执行路径
一个进程如果只有一条执行路径,则称为单线程程序。
一个进程如果有多条执行路径,则称为多线程程序。
并行与并发
前者是逻辑上同时发生,指在某一个时间内同时运行多个程序。
后者是物理上同时发生,指在某一个时间点同时运行多个程序。
线程的生命周期及五种基本状态
[图片上传失败...(image-f2c2ba-1515143320643)]
新建状态(New):当线程对象对创建后,即进入了新建状态,如:Thread t = new MyThread();
就绪状态(Runnable):当调用线程对象的start()方法(t.start();),线程即进入就绪状态。处于就绪状态的线程,只是说明此线程已经做好了准备,随时等待CPU调度执行,并不是说执行了t.start()此线程立即就会执行;
运行状态(Running):当CPU开始调度处于就绪状态的线程时,此时线程才得以真正执行,即进入到运行状态。注:就 绪状态是进入到运行状态的唯一入口,也就是说,线程要想进入运行状态执行,首先必须处于就绪状态中;
阻塞状态(Blocked):处于运行状态中的线程由于某种原因,暂时放弃对CPU的使用权,停止执行,此时进入阻塞状态,直到其进入到就绪状态,才 有机会再次被CPU调用以进入到运行状态。根据阻塞产生的原因不同,阻塞状态又可以分为三种:
1.等待阻塞:运行状态中的线程执行wait()方法,使本线程进入到等待阻塞状态;
2.同步阻塞 -- 线程在获取synchronized同步锁失败(因为锁被其它线程所占用),它会进入同步阻塞状态;
3.其他阻塞 -- 通过调用线程的sleep()或join()或发出了I/O请求时,线程会进入到阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入就绪状态。
死亡状态(Dead):线程执行完了或者因异常退出了run()方法,该线程结束生命周期。
实现多线程的三种方式
不能对同一线程对象两次调用start()方法。
-
继承Thread类,重写该类的run()方法。
class MyThread extends Thread { private int i = 0; @Override public void run() { for (i = 0; i < 100; i++) { System.out.println(Thread.currentThread().getName() + " " + i); } } } class MyThread extends Thread { private int i = 0; @Override public void run() { for (i = 0; i < 100; i++) { System.out.println(Thread.currentThread().getName() + " " + i); } } }
继承Thread类,通过重写run()方法定义了一个新的线程类MyThread,其中run()方法的方法体代表了线程需要完成的任务,称之为线程执行体。当创建此线程类对象时一个新的线程得以创建,并进入到线程新建状态。通过调用线程对象引用的start()方法,使得该线程进入到就绪状态,此时此线程并不一定会马上得以执行,这取决于CPU调度时机。
-
实现Runnable接口,并重写该接口的run()方法,该run()方法同样是线程执行体,创建Runnable实现类的实例,并以此实例作为Thread类的target来创建Thread对象,该Thread对象才是真正的线程对象
class MyRunnable implements Runnable { private int i = 0; @Override public void run() { for (i = 0; i < 100; i++) { System.out.println(Thread.currentThread().getName() + " " + i); } } } public class ThreadTest { public static void main(String[] args) { Runnable myRunnable = new MyRunnable(); // 创建一个Runnable实现类的对象 Thread thread1 = new Thread(myRunnable); // 将myRunnable作为Thread target创建新的线程 Thread thread2 = new Thread(myRunnable); thread1.start(); // 调用start()方法使得线程进入就绪状态 thread2.start(); } } //------------------------------------------- public class test { public static void main(String[] args) { new Thread(new Runnable() { @Override public void run() { } }).start(); } }
Thread和Runnable之间到底是什么关系呢?
public class ThreadTest { public static void main(String[] args) { for (int i = 0; i < 100; i++) { System.out.println(Thread.currentThread().getName() + " " + i); if (i == 30) { Runnable myRunnable = new MyRunnable(); Thread thread = new MyThread(myRunnable); thread.start(); } } } } class MyRunnable implements Runnable { private int i = 0; @Override public void run() { System.out.println("in MyRunnable run"); for (i = 0; i < 100; i++) { System.out.println(Thread.currentThread().getName() + " " + i); } } } class MyThread extends Thread { private int i = 0; public MyThread(Runnable runnable){ super(runnable); } @Override public void run() { System.out.println("in MyThread run"); for (i = 0; i < 100; i++) { System.out.println(Thread.currentThread().getName() + " " + i); } } }
同样的,与实现Runnable接口创建线程方式相似,不同的地方在于
Thread thread = new MyThread(myRunnable);
那么这种方式可以顺利创建出一个新的线程么?答案是肯定的。至于此时的线程执行体到底是MyRunnable接口中的run()方法还是MyThread类中的run()方法呢?通过输出我们知道线程执行体是MyThread类中的run()方法。其实原因很简单,因为Thread类本身也是实现了Runnable接口,而run()方法最先是在Runnable接口中定义的方法。
public interface Runnable {
public abstract void run();
}
我们看一下Thread类中对Runnable接口中run()方法的实现:
@Override
public void run() {
if (target != null) {
target.run();
}
}
也就是说,当执行到Thread类中的run()方法时,会首先判断target是否存在,存在则执行target中的run()方法,也就是实现了Runnable接口并重写了run()方法的类中的run()方法。但是上述给到的列子中,由于多态的存在,根本就没有执行到Thread类中的run()方法,而是直接先执行了运行时类型即MyThread类中的run()方法。
-
使用Callable和Future接口创建线程。具体是创建Callable接口的实现类,并实现clall()方法。并使用FutureTask类来包装Callable实现类的对象,且以此FutureTask对象作为Thread对象的target来创建线程。
public class ThreadTest { public static void main(String[] args) { Callable<Integer> myCallable = new MyCallable(); // 创建MyCallable对象 FutureTask<Integer> ft = new FutureTask<Integer>(myCallable); //使用FutureTask来包装MyCallable对象 for (int i = 0; i < 100; i++) { System.out.println(Thread.currentThread().getName() + " " + i); if (i == 30) { Thread thread = new Thread(ft); //FutureTask对象作为Thread对象的target创建新的线程 thread.start(); //线程进入到就绪状态 } } System.out.println("主线程for循环执行完毕.."); try { int sum = ft.get(); //取得新创建的新线程中的call()方法返回的结果 System.out.println("sum = " + sum); } catch (InterruptedException e) { e.printStackTrace(); } catch (ExecutionException e) { e.printStackTrace(); } } } class MyCallable implements Callable<Integer> { private int i = 0; // 与run()方法不同的是,call()方法具有返回值 @Override public Integer call() { int sum = 0; for (; i < 100; i++) { System.out.println(Thread.currentThread().getName() + " " + i); sum += i; } return sum; } }
首先,我们发现,在实现Callable接口中,此时不再是run()方法了,而是call()方法,此call()方法作为线程执行体,同时还具有返回值!在创建新的线程时,是通过FutureTask来包装MyCallable对象,同时作为了Thread对象的target。那么看下FutureTask类的定义:
public class FutureTask<V> implements RunnableFuture<V> { //.... } public interface RunnableFuture<V> extends Runnable, Future<V> { void run(); }
于是,我们发现FutureTask类实际上是同时实现了Runnable和Future接口,由此才使得其具有Future和Runnable双重特性。通过Runnable特性,可以作为Thread对象的target,而Future特性,使得其可以取得新创建线程中的call()方法的返回值。
执行下此程序,我们发现sum = 4950永远都是最后输出的。而“主线程for循环执行完毕..”则很可能是在子线程循环中间输出。由CPU的线程调度机制,我们知道,“主线程for循环执行完毕..”的输出时机是没有任何问题的,那么为什么sum =4950会永远最后输出呢?
原因在于通过ft.get()方法获取子线程call()方法的返回值时,当子线程此方法还未执行完毕,ft.get()方法会一直阻塞,直到call()方法执行完毕才能取到返回值。
三种方式对比
采用实现Runnable、Callable接口的方式创见多线程时,优势是:
线程类只是实现了Runnable接口或Callable接口,还可以继承其他类。
在这种方式下,多个线程可以共享同一个target对象,所以非常适合多个相同线程来处理同一份资源的情况,从而可以将CPU、代码和数据分开,形成清晰的模型,较好地体现了面向对象的思想。
劣势是:
编程稍微复杂,如果要访问当前线程,则必须使用Thread.currentThread()方法。
使用继承Thread类的方式创建多线程时优势是:
编写简单,如果需要访问当前线程,则无需使用Thread.currentThread()方法,直接使用this即可获得当前线程。
劣势是:
线程类已经继承了Thread类,所以不能再继承其他父类。
网友评论