Mat类
即“Matrix”,类似于Python中的numpy库下的array,该类的声明在头文件opencv2/core.hpp
(OpenCV4.0.0版本)
构造单通道矩阵的几种方式
method1:
构造2 * 3矩阵:注意参数是h,w型,之前已讨论过
Mat m = Mat(2,3,CV_32FC(1));
原型为:
Mat(int rows,int cols,int type);
method2:
构造2 * 3矩阵:注意Size类的参数是x,y型
Mat m = Mat(Size(3,2),CV_32FC(1));
原型为:
Mat(Size(int cols,int rows),int type);
type:
表示了矩阵中元素的类型以及矩阵的通道个数,它是一系列的预定义的常量,其命名规则为CV_(位数)+(数据类型)+(通道数),通道数括号可省略。
method3:
Mat m;
m.create(2,3,CV_32FC1);
//m.create(Size(3,2),CV_32FC1);
method4:
uchar matrix[2][3] = { {1,2,3},{4,5,6} };
Mat M = Mat(2, 3, CV_8UC1,matrix);
对于零矩阵,1矩阵和单位矩阵的创建,采用matlab命名,与python类似:
Mat o = Mat::ones(2,3,CV_32FC1);
Mat m = Mat::zeros(Size(3,2),CV_32FC1);
Mat m = Mat::eye(Size(3,2),CV_32FC1);
初始化矩阵:
Mat m = (Mat_<int>(2,3) << 1,2,3,4,5,6);
Mat_为底层定义好的函数模板,<type>为显式的函数模板的数据类型
获得Mat信息:
int main(int argc,char ** argv)
{
Mat m =(Mat_<int>(2,3) << 1,2,3,4,5,6);
cout << "行数:"<< m.rows << endl;
cout << "列数:"<< m.cols << endl;
cout << "尺寸:"<< m.size() << endl;
cout << "通道数:"<< m.channels() << endl;
cout << "面积:" << m.total() << endl;
cout << "维数:" << m.dims << endl;
return 0;
}
访问Mat元素的三种方式
1.通过成员函数at,m.at<int>(r,c)
,参数为r,w型
int main(int argc,char ** argv)
{
Mat m = (Mat_<int>(3, 2) << 1, 2, 3, 4, 5, 6);
for (int r = 0; r < m.rows; r++)
{
for (int c = 0; c < m.cols; c++)
{
cout << m.at<int>(r, c) << ",";
}
cout << endl;
}
return 0;
}
2.m.at<int>(Point(c,r))
,Point类参数为x,y型
int main(int argc,char ** argv)
{
Mat m = (Mat_<int>(3, 2) << 1, 2, 3, 4, 5, 6);
for (int y = 0; y < m.rows; y++)
{
for (int x = 0; x < m.cols; x++)
{
cout << m.at<int>(Point(x,y)) << ",";
}
cout << endl;
}
return 0;
}
3.指针,成员函数ptr
int main(int argc,char ** argv)
{
Mat m = (Mat_<int>(3, 2) << 1, 2, 3, 4, 5, 6);
for (int r = 0; r < m.rows; r++)
{
const int * ptr = m.ptr<int>(r);//r为指向行首地址
for (int c = 0; c < m.cols; c++)
{
cout << ptr[c] << ",";
}
cout << endl;
}
return 0;
}
Vec向量类(列向量)
原型:
Vec<Typename _Tp,int _cn>;
构造一个类型为_Tp的_cn * 1的列向量
Vec<int,3>vi(1,2,3);
cout << "第一个元素:" << vi[0] <<endl;
cout << "第二个元素:" << vi(1) <<endl;
构造多通道矩阵
method1
Mat m = Mat(200, 300, CV_32FC(3),Scalar(255,0,0));
method2
利用Vec列向量:
int main(int argc,char ** argv)
{
Mat m = (Mat_<Vec3f>(2, 2) << Vec3f(1, 2, 3), Vec3f(4, 5, 6), Vec3f(7, 8, 9), Vec3f(10, 11, 12));
for (int r = 0; r < m.rows; r++)
{
for (int c = 0; c < m.cols; c++)
{
cout << m.at<Vec3f>(r, c) << ",";
}
cout << endl;
}
return 0;
}
还可以用指针进行遍历:
int main(int argc,char ** argv)
{
Mat m = (Mat_<Vec3f>(2, 2) << Vec3f(1, 2, 3), Vec3f(4, 5, 6), Vec3f(7, 8, 9), Vec3f(10, 11, 12));
for (int r = 0; r < m.rows; r++)
{
Vec3f * ptr = m.ptr<Vec3f>(r);
for (int c = 0; c < m.cols; c++)
{
cout << ptr[c] << ",";
}
cout << endl;
}
return 0;
}
其它Mat操作
图像克隆(复制)
int main(int argc,char ** argv)
{
Mat img = imread("C:\\Users\\Lin Xi\\Desktop\\OpenCV\\7.jpg", 1);
Mat dst = img.clone();
imshow("clone", dst);
waitKey(0);
}
int main(int argc,char ** argv)
{
Mat img = imread("C:\\Users\\Lin Xi\\Desktop\\OpenCV\\7.jpg", 1);
Mat dst;
img.copyTo(dst);
imshow("clone", dst);
waitKey(0);
}
![](https://img.haomeiwen.com/i14052624/7187b4ed5f0f0404.jpg)
网友评论