美文网首页
Pytorch使用TensorboardX进行网络可视化

Pytorch使用TensorboardX进行网络可视化

作者: 悟空宝宝真帅 | 来源:发表于2018-06-04 23:48 被阅读0次

    由于在之前的实验中,通过观察发现Loss和Accuracy不稳定,所以想画个Loss曲线出来,通过Google发现可以使用tensorboard进行可视化,所以进行了相关配置,并且使用mnist做了测试。pytorch版本0.4.0。tensorboardX与pytorch版本无关,但是如果运行失败可能是pytorch更新版本后的新加的device问题。具体可见https://github.com/lanpa/tensorboard-pytorch
    首先安装tensorboardX和tensorflow命令如下:
    pip3 install tensorboardX
    pip3 install tensorflow (for tensorboard web server)

    测试代码:
    from __future__ import print_function
    import argparse
    import torch
    import torch.nn.functional as F
    import torch.optim as optim
    import net
    from torchvision import datasets, transforms
    from tensorboardX import SummaryWriter
    
    class Net(nn.Module):
      def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
            self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
            self.conv2_drop = nn.Dropout2d()
            self.fc1 = nn.Linear(320, 50)
            self.fc2 = nn.Linear(50, 10)
    
        def forward(self, x):
            x = F.relu(F.max_pool2d(self.conv1(x), 2))
            x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
            x = x.view(-1, 320)
            x = F.relu(self.fc1(x))
            x = F.dropout(x, training=self.training)
            x = self.fc2(x)
            return F.log_softmax(x, dim=1)
    
    def train(args, model, device, train_loader, optimizer, epoch):
        model.train()
        train_loss = []
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            train_loss.append(loss.data.numpy())
            if batch_idx % args.log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), loss.item()))
        return sum(train_loss) / len(train_loss)
    
    
    def test(args, model, device, test_loader):
        model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += F.nll_loss(output, target, size_average=False).item() # sum up batch loss
                pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
                correct += pred.eq(target.view_as(pred)).sum().item()
    
        test_loss /= len(test_loader.dataset)
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))
    
    def main():
        # Training settings
        parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
        parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                            help='input batch size for training (default: 64)')
        parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                            help='input batch size for testing (default: 1000)')
        parser.add_argument('--epochs', type=int, default=10, metavar='N',
                            help='number of epochs to train (default: 10)')
        parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                            help='learning rate (default: 0.01)')
        parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                            help='SGD momentum (default: 0.5)')
        parser.add_argument('--no-cuda', action='store_true', default=False,
                            help='disables CUDA training')
        parser.add_argument('--seed', type=int, default=1, metavar='S',
                            help='random seed (default: 1)')
        parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                            help='how many batches to wait before logging training status')
        args = parser.parse_args()
        use_cuda = not args.no_cuda and torch.cuda.is_available()
    
        torch.manual_seed(args.seed)
    
        device = torch.device("cuda" if use_cuda else "cpu")
    
        kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
        train_loader = torch.utils.data.DataLoader(
            datasets.MNIST('./data', train=True, download=True,
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
            batch_size=args.batch_size, shuffle=True, **kwargs)
        test_loader = torch.utils.data.DataLoader(
            datasets.MNIST('./data', train=False,
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
            batch_size=args.test_batch_size, shuffle=True, **kwargs)
    
        model = net.Net().to(device)
        optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
    
        writer = SummaryWriter('runs')
    
        for epoch in range(1, args.epochs + 1):
            train_loss = train(args, model, device, train_loader, optimizer, epoch)
            writer.add_scalar('Train', train_loss, epoch)
            test(args, model, device, test_loader)
        writer.close()
    
    if __name__ == '__main__':
        main()
    
    

    最后在工程目录下打开terminal运行
    tensorboard --logdir runs
    结果为:

    屏幕快照 2018-06-04 下午11.47.18.png

    相关文章

      网友评论

          本文标题:Pytorch使用TensorboardX进行网络可视化

          本文链接:https://www.haomeiwen.com/subject/xyuusftx.html