美文网首页
flink IngestionTime介绍

flink IngestionTime介绍

作者: 熊云昆 | 来源:发表于2020-08-16 19:56 被阅读0次

    flink的窗口时间属性TimeCharacteristic分为三种:ProcessingTime,IngestionTime,EventTime。

    1. ProcessingTime是处理时间,所有基于时间的操作(如时间窗口)将使用运行各自操作符的机器的系统时间,优点是简单,缺点是依赖每个节点的系统时间,如果数据流速不一样比如出现反压等会导致窗口数据不确定;
    2. EventTime是事件时间,是从数据里面提取出来的时间,EventTime依赖于数据,不依赖于系统时间,优点是能严格按照数据时间的发生顺序进行窗口统计,缺点是如果数据出现断流了,会导致watermark无法提高,从而无法导致窗口的触发
    3. IngestionTime是摄入时间,是数据从数据源取出的时候附带上系统时间作为watermark,作为ProcessingTime和EventTime的折中方案,会定时的往下游发送watermark,这个watermark是系统时间,不会因为数据断流导致watermark无法提高。适用于对数据延迟不大,对数据窗口统计要求不是很严格的场景。
      下面接下来从源码分析IngestionTime,代码在StreamSourceContexts.java中:
    switch (timeCharacteristic) {
                case EventTime:
                    ctx = new ManualWatermarkContext<>(
                        output,
                        processingTimeService,
                        checkpointLock,
                        streamStatusMaintainer,
                        idleTimeout);
    
                    break;
                case IngestionTime:
                    ctx = new AutomaticWatermarkContext<>(
                        output,
                        watermarkInterval,
                        processingTimeService,
                        checkpointLock,
                        streamStatusMaintainer,
                        idleTimeout);
    
                    break;
                case ProcessingTime:
                    ctx = new NonTimestampContext<>(checkpointLock, output);
                    break;
                default:
                    throw new IllegalArgumentException(String.valueOf(timeCharacteristic));
            }
    

    IngestionTime是通过AutomaticWatermarkContext类来实现逻辑的,继续看AutomaticWatermarkContext:

    private AutomaticWatermarkContext(
                    final Output<StreamRecord<T>> output,
                    final long watermarkInterval,
                    final ProcessingTimeService timeService,
                    final Object checkpointLock,
                    final StreamStatusMaintainer streamStatusMaintainer,
                    final long idleTimeout) {
    
                super(timeService, checkpointLock, streamStatusMaintainer, idleTimeout);
    
                this.output = Preconditions.checkNotNull(output, "The output cannot be null.");
    
                Preconditions.checkArgument(watermarkInterval >= 1L, "The watermark interval cannot be smaller than 1 ms.");
                this.watermarkInterval = watermarkInterval;
    
                this.reuse = new StreamRecord<>(null);
    
                this.lastRecordTime = Long.MIN_VALUE;
    
                long now = this.timeService.getCurrentProcessingTime();
                //注册定时器,等到下一个watermarkInterval的时候触发
                this.nextWatermarkTimer = this.timeService.registerTimer(now + watermarkInterval,
                    new WatermarkEmittingTask(this.timeService, checkpointLock, output));
    }
    

    可以看到,最后一行代码那里,注册了一个定时器,在下一个watermarkInterval时触发执行,再看触发的WatermarkEmittingTask里面的逻辑:

                @Override
                public void onProcessingTime(long timestamp) {
                    final long currentTime = timeService.getCurrentProcessingTime();
    
                    synchronized (lock) {
                        // we should continue to automatically emit watermarks if we are active
                        if (streamStatusMaintainer.getStreamStatus().isActive()) {
                            if (idleTimeout != -1 && currentTime - lastRecordTime > idleTimeout) {
                                // if we are configured to detect idleness, piggy-back the idle detection check on the
                                // watermark interval, so that we may possibly discover idle sources faster before waiting
                                // for the next idle check to fire
                                markAsTemporarilyIdle();
    
                                // no need to finish the next check, as we are now idle.
                                cancelNextIdleDetectionTask();
                            } else if (currentTime > nextWatermarkTime) {
                                // align the watermarks across all machines. this will ensure that we
                                // don't have watermarks that creep along at different intervals because
                                // the machine clocks are out of sync
                                // 这里是发送的watermark的值,取整处理
                                final long watermarkTime = currentTime - (currentTime % watermarkInterval);
    
                                output.emitWatermark(new Watermark(watermarkTime));
                                nextWatermarkTime = watermarkTime + watermarkInterval;
                            }
                        }
                    }
                    // 注册下一次定时器,下一次的执行时间又是间隔watermarkInterval
                    long nextWatermark = currentTime + watermarkInterval;
                    nextWatermarkTimer = this.timeService.registerTimer(
                            nextWatermark, new WatermarkEmittingTask(this.timeService, lock, output));
                }
    

    至此,逻辑已经很清楚了,IngestionTime是每经过watermarkInterval间隔发送一次watermark,watermark的值就是当前系统时间取整:currentTime - (currentTime % watermarkInterval)。IngestionTime并不会因为数据断流导致watermark无法提升,如果对数据延迟不大,对数据窗口统计要求不是很严格的场景,同时可能出现数据断流的情况下,IngestionTime比较适用。

    相关文章

      网友评论

          本文标题:flink IngestionTime介绍

          本文链接:https://www.haomeiwen.com/subject/yantjktx.html