All

作者: 腾子_Lony | 来源:发表于2017-09-23 03:06 被阅读0次

    # Apply gather() to bmi and save the result as bmi_long

    library(tidyr)

    bmi_long <- gather(bmi, year, bmi_val, -Country)

    # View the first 20 rows of the result

    head(bmi_long,20)

    # Apply spread() to bmi_long

    bmi_wide <- spread(bmi_long,year,bmi_val)

    # View the head of bmi_wide

    head(bmi_wide)

    # Apply separate() to bmi_cc

    bmi_cc_clean <- separate(bmi_cc, col = Country_ISO, into = c("Country", "ISO"), sep = "/")

    # Print the head of the result

    head(bmi_cc_clean)

    # Apply unite() to bmi_cc_clean

    bmi_cc <- unite(bmi_cc_clean, Country_ISO,Country,ISO, sep = "-")

    # View the head of the result

    head(bmi_cc)

    ## tidyr and dplyr are already loaded for you

    # View the head of census

    head(census)

    # Gather the month columns

    census2 <- gather(census, month, amount, -YEAR)

    # Arrange rows by YEAR using dplyr's arrange

    census2 <- arrange(census2, YEAR)

    # View first 20 rows of census2

    head(census2, 20)

    # View first 50 rows of census_long

    head(census_long,50)

    # Spread the type column

    census_long2 <- spread(census_long,type,amount)

    # View first 20 rows of census_long2

    head(census_long2,20)

    # View the head of census_long3

    head(census_long3)

    # Separate the yr_month column into two

    census_long4 <- separate(census_long3,yr_month,c("year","month"))

    # View the first 6 rows of the result

    head(census_long4)

    # Preview students2 with str()

    str(students2)

    # Load the lubridate package

    library(lubridate)

    # Parse as date

    dmy("17 Sep 2015")

    # Parse as date and time (with no seconds!)

    mdy_hm("July 15, 2012 12:56")

    # Coerce dob to a date (with no time)

    students2$dob <- ymd(students2$dob)

    # Coerce nurse_visit to a date and time

    students2$nurse_visit <- ymd_hms(students2$nurse_visit)

    # Look at students2 once more with str()

    str(students2)

    # Load the stringr package

    library(stringr)

    # Trim all leading and trailing whitespace

    c("  Filip ", "Nick  ", " Jonathan")

    str_trim(c("  Filip ", "Nick  ", " Jonathan"))

    # Pad these strings with leading zeros

    c("23485W", "8823453Q", "994Z")

    str_pad(c("23485W", "8823453Q", "994Z"),width=9,side="left",pad="0")

    # Print state abbreviations

    states

    # Make states all uppercase and save result to states_upper

    states_upper<-toupper(states)

    # Make states_upper all lowercase again

    tolower(states_upper)

    ## stringr has been loaded for you

    # Look at the head of students2

    head(students2)

    # Detect all dates of birth (dob) in 1997

    str_detect(students2$dob,"1997")

    # In the sex column, replace "F" with "Female"...

    students2$sex <- str_replace(students2$sex,"F","Female")

    # ...And "M" with "Male"

    students2$sex <- str_replace(students2$sex,"M","Male")

    # View the head of students2

    head(students2)

    # Call is.na() on the full social_df to spot all NAs

    is.na(social_df)

    # Use the any() function to ask whether there are any NAs in the data

    any(is.na(social_df))

    # View a summary() of the dataset

    summary(social_df)

    # Call table() on the status column

    table(social_df$status)

    相关文章

      网友评论

          本文标题:All

          本文链接:https://www.haomeiwen.com/subject/ybbqextx.html