参考链接:
图像读取:https://zhuanlan.zhihu.com/p/27434001
图像预处理:https://zhuanlan.zhihu.com/p/27382990
一、图像读取
from torch.utils.data.dataset import Dataset
二、图像预处理
1. 我们可以使用 transforms.ToTensor() 将 PIL.Image/numpy.ndarray 数据进转化为torch.FloadTensor,并归一化到[0, 1.0]:
我们可以使用 transforms.ToTensor() 将 PIL.Image/numpy.ndarray 数据进转化为torch.FloadTensor,并归一化到[0, 1.0]:
取值范围为[0, 255]的PIL.Image,转换成形状为[C, H, W],取值范围是[0, 1.0]的torch.FloadTensor;
形状为[H, W, C]的numpy.ndarray,转换成形状为[C, H, W],取值范围是[0, 1.0]的torch.FloadTensor。
2.归一化
transforms.Normalize([0.0054],[0.0037])
(1)transforms.Compose就是将transforms组合在一起;
(2)transforms.Normalize使用如下公式进行归一化:
channel=(channel-mean)/std
这样一来,我们的数据中的每个值就变成了[-1,1]的数了。
网友评论