美文网首页
paddlepaddle环境搭建及简单使用

paddlepaddle环境搭建及简单使用

作者: 刹那丨永恒 | 来源:发表于2020-03-02 11:16 被阅读0次

    1.paddlepaddle平台简介

    PaddlePaddle (PArallel Distributed Deep LEarning)是一个易用、高效、灵活、可扩展的深度学习框架。其特点如下:
    -同时支持动态图和静态图,兼顾灵活性和高性能
    -源于实际业务淬炼,提供应用效果领先的官方模型
    -源于产业实践,输出业界领先的超大规模并行深度学习平台能力

    2.环境搭建

    1.选择macOS下安装

    image.png
    2.检查环境
    查看MacOS版本
    mac系统详情.png
    根据Python版本安装pip3
    python3 -m ensurepip
    python3 -m pip --version
    
    pip3安装完成.png
    安装paddlepaddle
    python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
    
    安装截图.png

    验证安装
    安装完成后您可以使用 python 或 python3 进入python解释器,输入import paddle.fluid as fluid ,再输入 fluid.install_check.run_check()

    安装成功.png

    3.基本术语及使用

    数据的表示和定义
    Paddle和其他主流框架一样,使用Tensor数据结构来承载数据,包括模型中的可学习参数(如网络权重、偏置等), 网络中每一层的输入输出数据,常量数据等。
    Tensor可以简单理解成一个多维数组,一般而言可以有任意多的维度。 不同的Tensor可以具有自己的数据类型和形状,同一Tensor中每个元素的数据类型是一样的, Tensor的形状就是Tensor的维度。关于Tensor的详细介绍请参阅:Tensor
    在Paddle中我们使用 fluid.data 来创建数据变量, fluid.data 需要指定Tensor的形状信息和数据类型, 当遇到无法确定的维度时,可以将相应维度指定为None,如下面的代码片段所示:

    import paddle.fluid as fluid
    
    # 定义一个数据类型为int64的二维数据变量x,x第一维的维度为3,第二个维度未知,要在程序执行过程中才能确定,因此x的形状可以指定为[3, None]
    x = fluid.data(name="x", shape=[3, None], dtype="int64")
    
    # 大多数网络都会采用batch方式进行数据组织,batch大小在定义时不确定,因此batch所在维度(通常是第一维)可以指定为None
    batched_x = fluid.data(name="batched_x", shape=[None, 3, None], dtype='int64')
    

    fluid.data 之外,我们还可以使用 fluid.layers.fill_constant 来创建常量, 如下代码将创建一个维度为[3, 4], 数据类型为int64的Tensor,其中所有元素均为16(value参数所指定的值)。

    import paddle.fluid as fluid
    data = fluid.layers.fill_constant(shape=[3, 4], value=16, dtype='int64')
    

    以上例子中,我们只使用了一种数据类型"int64",即有符号64位整数数据类型,更多Paddle目前支持的数据类型请查看:支持的数据类型

    需要注意的是,在静态图编程方式中,上述定义的Tensor并不具有值(即使创建常量的时候指定了value), 它们仅表示将要执行的操作,在网络执行时(训练或者预测)才会进行真正的赋值操作, 如您直接打印上例代码中的data将会得对其信息的描述:

    print data
    

    输出结果:

    name: "fill_constant_0.tmp_0"
    type {
        type: LOD_TENSOR
        lod_tensor {
            tensor {
                data_type: INT64
                dims: 3
                dims: 4
            }
        }
    }
    persistable: false
    

    在网络执行过程中,获取Tensor数值有两种方式:方式一是利用 paddle.fluid.layers.Print 创建一个打印操作, 打印正在访问的Tensor。方式二是将Variable添加在fetch_list中。

    方式一的代码实现如下所示:

    
    data = fluid.layers.fill_constant(shape=[3, 4], value=16, dtype='int64')
    data = fluid.layers.Print(data, message="Print data:")
    
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    
    ret = exe.run()
    

    运行时的输出结果:

    1571742368    Print data:    The place is:CPUPlace
    Tensor[fill_constant_0.tmp_0]
        shape: [3,4,]
        dtype: x
        data: 16,16,16,16,16,16,16,16,16,16,16,16,
    

    数据读取
    使用 fluid.data 创建数据变量之后,我们需要把网络执行所需要的数据读取到对应变量中, 具体的数据准备过程,请阅读准备数据
    组建网络
    在Paddle中,数据计算类API统一称为Operator(算子),简称OP,大多数OP在 paddle.fluid.layers 模块中提供。
    例如用户可以利用 paddle.fluid.layers.elementwise_add() 实现两个输入Tensor的加法运算:

    # 定义变量
    import paddle.fluid as fluid
    a = fluid.data(name="a", shape=[None, 1], dtype='int64')
    b = fluid.data(name="b", shape=[None, 1], dtype='int64')
    
    # 组建网络(此处网络仅由一个操作构成,即elementwise_add)
    result = fluid.layers.elementwise_add(a,b)
    
    # 准备运行网络
    cpu = fluid.CPUPlace() # 定义运算设备,这里选择在CPU下训练
    exe = fluid.Executor(cpu) # 创建执行器
    exe.run(fluid.default_startup_program()) # 网络参数初始化
    
    # 读取输入数据
    import numpy
    data_1 = int(input("Please enter an integer: a="))
    data_2 = int(input("Please enter an integer: b="))
    x = numpy.array([[data_1]])
    y = numpy.array([[data_2]])
    
    # 运行网络
    outs = exe.run(
        feed={'a':x, 'b':y}, # 将输入数据x, y分别赋值给变量a,b
        fetch_list=[result] # 通过fetch_list参数指定需要获取的变量结果
        )
    
    # 输出计算结果
    print "%d+%d=%d" % (data_1,data_2,outs[0][0])
    

    输出结果:

    Please enter an integer: a=7
    Please enter an integer: b=3
    7+3=10
    

    组建更加复杂的网络
    某些场景下,用户需要根据当前网络中的某些状态,来具体决定后续使用哪一种操作,或者重复执行某些操作。在动态图中,可以方便的使用Python的控制流语句(如for,if-else等)来进行条件判断,但是在静态图中,由于组网阶段并没有实际执行操作,也没有产生中间计算结果,因此无法使用Python的控制流语句来进行条件判断,为此静态图提供了多个控制流API来实现条件判断。这里以fluid.layers.while_loop为例来说明如何在静态图中实现条件循环的操作。
    while_loop API用于实现类似while/for的循环控制功能,使用一个callable的方法cond作为参数来表示循环的条件,只要cond的返回值为True,while_loop就会循环执行循环体body(也是一个callable的方法),直到 cond 的返回值为False。对于while_loop API的详细定义和具体说明请参考文档fluid.layers.while_loop
    下面的例子中,使用while_loop API进行条件循环操作,其实现的功能相当于在python中实现如下代码:

    i = 0
    ten = 10
    while i < ten:
        i = i + 1
    print('i =', i)
    

    在静态图中使用while_loop API实现以上代码的逻辑:

    # 该代码要求安装飞桨1.7+版本
    
    # 该示例代码展示整数循环+1,循环10次,输出计数结果
    import paddle.fluid as fluid
    import paddle.fluid.layers as layers
    
    # 定义cond方法,作为while_loop的判断条件
    def cond(i, ten):
        return i < ten 
    
    # 定义body方法,作为while_loop的执行体,只要cond返回值为True,while_loop就会一直调用该方法进行计算
    # 由于在使用while_loop OP时,cond和body的参数都是由while_loop的loop_vars参数指定的,所以cond和body必须有相同数量的参数列表,因此body中虽然只需要i这个参数,但是仍然要保持参数列表个数为2,此处添加了一个dummy参数来进行"占位"
    def body(i, dummy):
        # 计算过程是对输入参数i进行自增操作,即 i = i + 1
        i = i + 1
        return i, dummy
    
    i = layers.fill_constant(shape=[1], dtype='int64', value=0) # 循环计数器
    ten = layers.fill_constant(shape=[1], dtype='int64', value=10) # 循环次数
    out, ten = layers.while_loop(cond=cond, body=body, loop_vars=[i, ten]) # while_loop的返回值是一个tensor列表,其长度,结构,类型与loop_vars相同
    
    exe = fluid.Executor(fluid.CPUPlace())
    res = exe.run(fluid.default_main_program(), feed={}, fetch_list=out)
    print(res) #[array([10])]
    

    一个完整的网络示例
    一个典型的模型通常包含4个部分,分别是:输入数据定义,搭建网络(模型前向计算逻辑),定义损失函数,以及选择优化算法。

    下面我们通过一个非常简单的数据预测网络(线性回归),来完整的展示如何使用Paddle静态图方式完成一个深度学习模型的组建和训练。

    问题描述:给定一组数据 <X,Y>,求解出函数 f,使得 y=f(x),其中X,Y均为一维张量。最终网络可以依据输入x,准确预测出ypredict。

    1.定义数据
    假设输入数据X=[1 2 3 4],Y=[2 4 6 8],在网络中定义:

    # 定义X数值
    train_data=numpy.array([[1.0], [2.0], [3.0], [4.0]]).astype('float32')
    # 定义期望预测的真实值y_true
    y_true = numpy.array([[2.0], [4.0], [6.0], [8.0]]).astype('float32')
    

    2.搭建网络(定义前向计算逻辑)

    接下来需要定义预测值与输入的关系,本次使用一个简单的线性回归函数进行预测:

    # 定义输入数据类型
    x = fluid.data(name="x", shape=[None, 1], dtype='float32')
    y = fluid.data(name="y", shape=[None, 1], dtype='float32')
    # 搭建全连接网络
    y_predict = fluid.layers.fc(input=x, size=1, act=None)
    

    3.添加损失函数

    完成模型搭建后,如何评估预测结果的好坏呢?我们通常在设计的网络中添加损失函数,以计算真实值与预测值的差。

    在本例中,损失函数采用均方差函数

    cost = fluid.layers.square_error_cost(input=y_predict, label=y)
    avg_cost = fluid.layers.mean(cost)
    

    4.网络优化

    确定损失函数后,可以通过前向计算得到损失值,并根据损失值对网络参数进行更新,最简单的算法是随机梯度下降法:w=w−η⋅g,由 fluid.optimizer.SGD 实现:

    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
    sgd_optimizer.minimize(avg_cost)
    

    让我们的网络训练100次,查看结果:

    # 加载库
    import paddle.fluid as fluid
    import numpy
    
    # 定义输入数据
    train_data=numpy.array([[1.0],[2.0],[3.0],[4.0]]).astype('float32')
    y_true = numpy.array([[2.0],[4.0],[6.0],[8.0]]).astype('float32')
    
    # 组建网络
    x = fluid.data(name="x",shape=[None, 1],dtype='float32')
    y = fluid.data(name="y",shape=[None, 1],dtype='float32')
    y_predict = fluid.layers.fc(input=x,size=1,act=None)
    
    # 定义损失函数
    cost = fluid.layers.square_error_cost(input=y_predict,label=y)
    avg_cost = fluid.layers.mean(cost)
    
    # 选择优化方法
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
    sgd_optimizer.minimize(avg_cost)
    
    # 网络参数初始化
    cpu = fluid.CPUPlace()
    exe = fluid.Executor(cpu)
    exe.run(fluid.default_startup_program())
    
    # 开始训练,迭代100次
    for i in range(100):
        outs = exe.run(
            feed={'x':train_data, 'y':y_true},
            fetch_list=[y_predict, avg_cost])
    
    # 输出训练结果
    print outs
    

    输出结果:

    [array([[2.2075021],
            [4.1005487],
            [5.9935956],
            [7.8866425]], dtype=float32), array([0.01651453], dtype=float32)]
    

    运行结果与期望一致:


    训练100次结果.png

    让我们的网络训练1000次,输出结果:


    训练1000次结果
    让我们的网络训练10000次,输出结果:
    训练10000次结果.png

    相关文章

      网友评论

          本文标题:paddlepaddle环境搭建及简单使用

          本文链接:https://www.haomeiwen.com/subject/ydcpkhtx.html