1.概念:
UDF就是用户自定义的函数
UDAF就是用户自定义的聚合函数
2.代码:
(1)pom.xml
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
</dependency>
(2)
SparkSQLUDFUDAF.scala
package spark.sqlshizhan
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.{ Row, SQLContext }
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.expressions.MutableAggregationBuffer
import org.apache.spark.sql.types.DataType
import org.apache.spark.sql.types.IntegerType
/**
* @ClassName SparkSQLUDFUDAF
* @MethodDesc: SparkSQL UDF与UDAF的使用
* @Author Movle
* @Date 5/18/20 10:44 下午
* @Version 1.0
* @Email movle_xjk@foxmail.com
**/
object SparkSQLUDFUDAF {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local").setAppName("SparkSQLUDFUDAF")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val bigData = Array("Spark", "Spark", "Hadoop", "spark", "Hadoop", "spark", "Hadoop", "Hadoop", "spark", "spark")
//创建Dataframe
val bigDataRDD = sc.parallelize(bigData)
val bigDataRDDRow = bigDataRDD.map(item => Row(item))
val structType = StructType(Array(
new StructField("word", StringType)))
val bigDataDF = sqlContext.createDataFrame(bigDataRDDRow, structType)
bigDataDF.createOrReplaceTempView("bigDataTable")
//UDF 最多22个输入参数
sqlContext.udf.register("computeLength",(input:String,input2:String) => input.length())
sqlContext.sql("select word,computeLength(word,word) from bigDataTable").show()
sqlContext.udf.register("wordcount", new MyUDAF)
sqlContext.sql("select word,wordcount(word) as count from bigDataTable group by word").show()
sc.stop()
}
}
class MyUDAF extends UserDefinedAggregateFunction{
/**
* 该方法指定具体输入数据的类型
* @return
*/
override def inputSchema: StructType = StructType(Array(StructField("input", StringType, true)))
/**
* 在进行聚合操作的时候所要处理的数据的结果的类型
* @return
*/
override def bufferSchema: StructType = StructType(Array(StructField("count", IntegerType, true)))
/**
* 指定UDAF函数计算后返回的结果类型
* @return
*/
override def dataType: DataType = IntegerType
/**
* 确保一致性,一般都用true
* @return
*/
override def deterministic: Boolean = true
/**
* 在Aggregate之前每组数据的初始化结果
* @param buffer
*/
override def initialize(buffer: MutableAggregationBuffer): Unit = { buffer(0) = 0 }
/**
* 在进行聚合的时候,每当有新的值进来,对分组后的聚合如何进行计算
* 本地的聚合操作,相当于Hadoop MapReduce模型中的Combiner
* @param buffer
* @param input
*/
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
buffer(0) = buffer.getAs[Int](0) + 1
}
/**
* 最后在分布式节点进行Local Reduce完成后需要进行全局级别的Merge操作
* @param buffer1
* @param buffer2
*/
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1(0) = buffer1.getAs[Int](0) + buffer2.getAs[Int](0)
}
/**
* 返回UDAF最后的计算结果
* @param buffer
* @return
*/
override def evaluate(buffer: Row): Any = buffer.getAs[Int](0)
}
网友评论