一个类的分类是何时被载入内存的?分类中方法与对应类中的方法重名时调用此方法怎么执行?
想了解以上问题还需要查看objc源码才可以得到答案。下面就逐步揭开分类的面纱。为了更加直观还是直接贴一部分源码,源码里边会含有部分注释,然后最后总结。
分类数据结构如图:

由上图可知分类无法直接添加成员变量,可以使用runtime的关联对象添加。
1. 首先找到dyld入口函数void _objc_init(void)
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
runtime_init();
exception_init();
#if __OBJC2__
cache_t::init();
#endif
_imp_implementationWithBlock_init();
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
#if __OBJC2__
didCallDyldNotifyRegister = true;
#endif
}
上述代码会调用_dyld_objc_notify_register(&map_images, load_images, unmap_image);
这个函数。然后会分别依次调用load_images
、 map_images
函数
2. 首先调用void load_images(const char *path __unused, const struct mach_header *mh)
void load_images(const char *path __unused, const struct mach_header *mh)
{
if (!didInitialAttachCategories && didCallDyldNotifyRegister) {
didInitialAttachCategories = true;
loadAllCategories();
}
…...
}
3. static void loadAllCategories()
static void loadAllCategories() {
mutex_locker_t lock(runtimeLock);
for (auto *hi = FirstHeader; hi != NULL; hi = hi->getNext()) {
load_categories_nolock(hi);
}
}
调用load_images
的时候通过loadAllCategories
已经获取到了所有类的分类了。这个时候就可以执行map_images
函数了。
4. 调用函数void map_images(unsigned count, const char * const paths[], const struct mach_header * const mhdrs[])
void map_images(unsigned count, const char * const paths[],
const struct mach_header * const mhdrs[])
{
mutex_locker_t lock(runtimeLock);
return map_images_nolock(count, paths, mhdrs);
}
5. void map_images_nolock(unsigned mhCount, const char * const mhPaths[], const struct mach_header * const mhdrs[])
void map_images_nolock(unsigned mhCount, const char * const mhPaths[], const struct mach_header * const mhdrs[])
{
......
if (hCount > 0) {
_read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
}
......
}
6. void _read_images(header_info **hList, uint32_t hCount, int totalClasses, int unoptimizedTotalClasses)
void _read_images(header_info **hList, uint32_t hCount, int totalClasses, int unoptimizedTotalClasses)
{
......
// Discover categories. Only do this after the initial category
// attachment has been done. For categories present at startup,
// discovery is deferred until the first load_images call after
// the call to _dyld_objc_notify_register completes. rdar://problem/53119145
if (didInitialAttachCategories) {
for (EACH_HEADER) {
load_categories_nolock(hi);
}
}
......
}
7. static void load_categories_nolock(header_info *hi)
static void load_categories_nolock(header_info *hi) {
bool hasClassProperties = hi->info()->hasCategoryClassProperties();
......
// First, register the category with its target class.
// Then, rebuild the class's method lists (etc) if
// the class is realized.
if (cat->instanceMethods || cat->protocols
|| cat->instanceProperties)
{
if (cls->isRealized()) {
attachCategories(cls, &lc, 1, ATTACH_EXISTING);
} else {
objc::unattachedCategories.addForClass(lc, cls);
}
}
if (cat->classMethods || cat->protocols
|| (hasClassProperties && cat->_classProperties))
{
if (cls->ISA()->isRealized()) {
attachCategories(cls->ISA(), &lc, 1, ATTACH_EXISTING | ATTACH_METACLASS);
} else {
objc::unattachedCategories.addForClass(lc, cls->ISA());
}
}
......
}
8. 上述代码中调用了此函数static void attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count, int flags)。
1)其实以前版本的当前方法对分类排序是使用while循环来排序的,当前版本使用数组移动下标来实现了。
2)下面这段代码中含有部分注释请细看。
// Attach method lists and properties and protocols from categories to a class.
// Assumes the categories in cats are all loaded and sorted by load order,
// oldest categories first.
static void attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count, int flags)
{
if (slowpath(PrintReplacedMethods)) {
printReplacements(cls, cats_list, cats_count);
}
if (slowpath(PrintConnecting)) {
_objc_inform("CLASS: attaching %d categories to%s class '%s'%s",
cats_count, (flags & ATTACH_EXISTING) ? " existing" : "",
cls->nameForLogging(), (flags & ATTACH_METACLASS) ? " (meta)" : "");
}
//描述分类方法排列顺序以及列表内存分配原则
/*
* Only a few classes have more than 64 categories during launch.
* This uses a little stack, and avoids malloc.
*
* Categories must be added in the proper order, which is back
* to front. To do that with the chunking, we iterate cats_list
* from front to back, build up the local buffers backwards,
* and call attachLists on the chunks. attachLists prepends the
* lists, so the final result is in the expected order.
*/
constexpr uint32_t ATTACH_BUFSIZ = 64;
method_list_t *mlists[ATTACH_BUFSIZ];
property_list_t *proplists[ATTACH_BUFSIZ];
protocol_list_t *protolists[ATTACH_BUFSIZ];
uint32_t mcount = 0;
uint32_t propcount = 0;
uint32_t protocount = 0;
bool fromBundle = NO;
bool isMeta = (flags & ATTACH_METACLASS);
auto rwe = cls->data()->extAllocIfNeeded();
for (uint32_t i = 0; i < cats_count; i++) {
auto& entry = cats_list[I];
method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
if (mlist) {
//默认一个类最多有64个分类,如果超过64个则先和合并一部分分类的方法,然后继续排序分类方法
if (mcount == ATTACH_BUFSIZ) {
prepareMethodLists(cls, mlists, mcount, NO, fromBundle, __func__);
rwe->methods.attachLists(mlists, mcount);
mcount = 0;
}
//先读取到的分类方法列表放在mlists数组的后边,后读取到的分类方法列表放在mlists数组前边
mlists[ATTACH_BUFSIZ - ++mcount] = mlist;
fromBundle |= entry.hi->isBundle();
}
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi);
if (proplist) {
if (propcount == ATTACH_BUFSIZ) {
rwe->properties.attachLists(proplists, propcount);
propcount = 0;
}
proplists[ATTACH_BUFSIZ - ++propcount] = proplist;
}
protocol_list_t *protolist = entry.cat->protocolsForMeta(isMeta);
if (protolist) {
if (protocount == ATTACH_BUFSIZ) {
rwe->protocols.attachLists(protolists, protocount);
protocount = 0;
}
protolists[ATTACH_BUFSIZ - ++protocount] = protolist;
}
}
if (mcount > 0) {
prepareMethodLists(cls, mlists + ATTACH_BUFSIZ - mcount, mcount,
NO, fromBundle, __func__);
rwe->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);
if (flags & ATTACH_EXISTING) {
flushCaches(cls, __func__, [](Class c){
// constant caches have been dealt with in prepareMethodLists
// if the class still is constant here, it's fine to keep
return !c->cache.isConstantOptimizedCache();
});
}
}
rwe->properties.attachLists(proplists + ATTACH_BUFSIZ - propcount, propcount);
rwe->protocols.attachLists(protolists + ATTACH_BUFSIZ - protocount, protocount);
}
9. void attachLists(List* const * addedLists, uint32_t addedCount)
1)此函数中的rwe
属于类对象结构中的变量,里边存储了属性列表、协议列表、方法列表,他们数据类型又分别继承了list_array_tt
这个类,所以都可以调用这个类list_array_tt
里边的函数attachLists
。
2)以前版本这里合并属性、协议、方法这些列表是使用memmove
和memcpy
实现的。当前版本使用修改数组下标实现了。
3)不明白类对象数据结构的请看这里。
4)下面代码中含有注释,请细心查看。
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;
if (hasArray()) {
// many lists -> many lists
uint32_t oldCount = array()->count;
uint32_t newCount = oldCount + addedCount;
//原来数组扩容
array_t *newArray = (array_t *)malloc(array_t::byteSize(newCount));
newArray->count = newCount;
array()->count = newCount;
//向后移动数组中原来的数据
for (int i = oldCount - 1; i >= 0; I--)
newArray->lists[i + addedCount] = array()->lists[I];
//在数组的前面依次插入分类中的数据
for (unsigned i = 0; i < addedCount; I++)
newArray->lists[i] = addedLists[I];
free(array());
setArray(newArray);
validate();
}
else if (!list && addedCount == 1) {
// 0 lists -> 1 list
list = addedLists[0];
validate();
}
else {
// 1 list -> many lists
Ptr<List> oldList = list;
uint32_t oldCount = oldList ? 1 : 0;
uint32_t newCount = oldCount + addedCount;
setArray((array_t *)malloc(array_t::byteSize(newCount)));
array()->count = newCount;
if (oldList) array()->lists[addedCount] = oldList;
for (unsigned i = 0; i < addedCount; I++)
array()->lists[i] = addedLists[I];
validate();
}
}
总结如下:
1)根据objc源码可以看到分类是在程序启动的dyld阶段加载进内存的。
_objc_init -> _dyld_objc_notify_register -> map_images -> map_images_nolock -> _read_images ->
load_categories_nolock -> attachCategories -> attachLists
2)由于最后加载(编译)的分类在方法合并进原类方法列表的时候放在了方法列表的最前边,所以调用同名方法的时候会调用最后加载(编译)的分类中的方法。
网友评论