webrtc实现了一个在不同平台下都可以稳定获取时间的Clock模块, 单例模式, 有学习价值.
下面是Clock基类
class Clock {
public:
virtual ~Clock() {}
virtual Timestamp CurrentTime() = 0;
virtual NtpTime CurrentNtpTime();
virtual NtpTime ConvertTimestampToNtpTime(Timestamp timestamp) = 0;
int64_t TimeInMilliseconds();
int64_t TimeInMicroseconds();
int64_t CurrentNtpInMilliseconds();
int64_t ConvertTimestampToNtpTimeInMilliseconds(int64_t timestamp_ms);
static Clock* GetRealTimeClock();
};
在不同平台通过宏定义去绑定不同的Clock实现
Clock* Clock::GetRealTimeClock() {
#if defined(WINUWP)
static Clock* const clock = new WinUwpRealTimeClock();
#elif defined(WEBRTC_WIN)
static Clock* const clock = new WindowsRealTimeClock();
#elif defined(WEBRTC_POSIX)
static Clock* const clock = new UnixRealTimeClock();
#else
static Clock* const clock = nullptr;
#endif
return clock;
}
那么实现以上这个static Clock, 想到了三种写法:
//static clock* clock = nullptr
Clock* Clock::GetTimeClock(const ClockType type)
{
static Clock* clock = nullptr;
switch (type) {
case ClockType::WinClock:
clock = new WinClock();
return clock;
case ClockType::LinuxClock:
clock = new LinuxClock();
return clock;
default:
break;
}
return nullptr;
}
// static Clocl clock = XXXClock
Clock* Clock::GetTimeClock(const ClockType type)
{
if(type == ClockType::WinClock) {
static Clock clock = WinClock();
return &clock;
}else if(type == ClockType::LinuxClock) {
static Clock clock = LinuxClock();
return &clock;
}else {
return nullptr;
}
}
// static Clock* clock = new XXXClock
Clock* Clock::GetTimeClock(const ClockType type)
{
if (type == ClockType::WinClock) {
static Clock* clock = new WinClock();
return clock;
}
else if (type == ClockType::LinuxClock) {
static Clock* clock = new LinuxClock();
return clock;
}
else {
return nullptr;
}
}
经测试,
第一种写法不能保证单例, 并没有把生成的对象放到堆上去.
第二种生成的对象被放到了全局数据区, 可以不用delete数据, 生命周期随程序走, 会自动释放内存, 没有办法提前释放内存占用,
第三种被放到了堆区, 需要调用delete, 但是如果单例生命周期也是跟着程序走的, 也不需要调delete. 一般谨慎调用delete.
一般使用的时候向下面这样调接口就可以
Clock* clock = Clock::GetRealTimeClock();
Clock* const clock_;
初始化列表: clock_(clock)
const auto now_ms = clock_->TimeInMilliseconds();
源文件
clock.h
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef SYSTEM_WRAPPERS_INCLUDE_CLOCK_H_
#define SYSTEM_WRAPPERS_INCLUDE_CLOCK_H_
#include <stdint.h>
#include <atomic>
#include <memory>
#include "api/units/timestamp.h"
#include "rtc_base/system/rtc_export.h"
#include "system_wrappers/include/ntp_time.h"
namespace webrtc {
// January 1970, in NTP seconds.
const uint32_t kNtpJan1970 = 2208988800UL;
// Magic NTP fractional unit.
const double kMagicNtpFractionalUnit = 4.294967296E+9;
// A clock interface that allows reading of absolute and relative timestamps.
class RTC_EXPORT Clock {
public:
virtual ~Clock() {}
// Return a timestamp relative to an unspecified epoch.
virtual Timestamp CurrentTime() = 0;
int64_t TimeInMilliseconds() { return CurrentTime().ms(); }
int64_t TimeInMicroseconds() { return CurrentTime().us(); }
// Retrieve an NTP absolute timestamp (with an epoch of Jan 1, 1900).
// TODO(bugs.webrtc.org/11327): Make this non-virtual once
// "WebRTC-SystemIndependentNtpTimeKillSwitch" is removed.
virtual NtpTime CurrentNtpTime() {
return ConvertTimestampToNtpTime(CurrentTime());
}
int64_t CurrentNtpInMilliseconds() { return CurrentNtpTime().ToMs(); }
// Converts between a relative timestamp returned by this clock, to NTP time.
virtual NtpTime ConvertTimestampToNtpTime(Timestamp timestamp) = 0;
int64_t ConvertTimestampToNtpTimeInMilliseconds(int64_t timestamp_ms) {
return ConvertTimestampToNtpTime(Timestamp::Millis(timestamp_ms)).ToMs();
}
// Returns an instance of the real-time system clock implementation.
static Clock* GetRealTimeClock();
};
class SimulatedClock : public Clock {
public:
// The constructors assume an epoch of Jan 1, 1970.
explicit SimulatedClock(int64_t initial_time_us);
explicit SimulatedClock(Timestamp initial_time);
~SimulatedClock() override;
// Return a timestamp with an epoch of Jan 1, 1970.
Timestamp CurrentTime() override;
NtpTime ConvertTimestampToNtpTime(Timestamp timestamp) override;
// Advance the simulated clock with a given number of milliseconds or
// microseconds.
void AdvanceTimeMilliseconds(int64_t milliseconds);
void AdvanceTimeMicroseconds(int64_t microseconds);
void AdvanceTime(TimeDelta delta);
private:
// The time is read and incremented with relaxed order. Each thread will see
// monotonically increasing time, and when threads post tasks or messages to
// one another, the synchronization done as part of the message passing should
// ensure that any causual chain of events on multiple threads also
// corresponds to monotonically increasing time.
std::atomic<int64_t> time_us_;
};
} // namespace webrtc
#endif // SYSTEM_WRAPPERS_INCLUDE_CLOCK_H_
clock.cc
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
#if defined(WEBRTC_WIN)
// Windows needs to be included before mmsystem.h
#include "rtc_base/win32.h"
#include <mmsystem.h>
#elif defined(WEBRTC_POSIX)
#include <sys/time.h>
#include <time.h>
#endif // defined(WEBRTC_POSIX)
#include "rtc_base/synchronization/mutex.h"
#include "rtc_base/time_utils.h"
namespace webrtc {
namespace {
int64_t NtpOffsetUsCalledOnce() {
constexpr int64_t kNtpJan1970Sec = 2208988800;
int64_t clock_time = rtc::TimeMicros();
int64_t utc_time = rtc::TimeUTCMicros();
return utc_time - clock_time + kNtpJan1970Sec * rtc::kNumMicrosecsPerSec;
}
NtpTime TimeMicrosToNtp(int64_t time_us) {
static int64_t ntp_offset_us = NtpOffsetUsCalledOnce();
int64_t time_ntp_us = time_us + ntp_offset_us;
RTC_DCHECK_GE(time_ntp_us, 0); // Time before year 1900 is unsupported.
// Convert seconds to uint32 through uint64 for a well-defined cast.
// A wrap around, which will happen in 2036, is expected for NTP time.
uint32_t ntp_seconds =
static_cast<uint64_t>(time_ntp_us / rtc::kNumMicrosecsPerSec);
// Scale fractions of the second to NTP resolution.
constexpr int64_t kNtpFractionsInSecond = 1LL << 32;
int64_t us_fractions = time_ntp_us % rtc::kNumMicrosecsPerSec;
uint32_t ntp_fractions =
us_fractions * kNtpFractionsInSecond / rtc::kNumMicrosecsPerSec;
return NtpTime(ntp_seconds, ntp_fractions);
}
void GetSecondsAndFraction(const timeval& time,
uint32_t* seconds,
double* fraction) {
*seconds = time.tv_sec + kNtpJan1970;
*fraction = time.tv_usec / 1e6;
while (*fraction >= 1) {
--*fraction;
++*seconds;
}
while (*fraction < 0) {
++*fraction;
--*seconds;
}
}
} // namespace
class RealTimeClock : public Clock {
public:
RealTimeClock()
: use_system_independent_ntp_time_(!field_trial::IsEnabled(
"WebRTC-SystemIndependentNtpTimeKillSwitch")) {}
Timestamp CurrentTime() override {
return Timestamp::Micros(rtc::TimeMicros());
}
NtpTime CurrentNtpTime() override {
return use_system_independent_ntp_time_ ? TimeMicrosToNtp(rtc::TimeMicros())
: SystemDependentNtpTime();
}
NtpTime ConvertTimestampToNtpTime(Timestamp timestamp) override {
// This method does not check `use_system_independent_ntp_time_` because
// all callers never used the old behavior of `CurrentNtpTime`.
return TimeMicrosToNtp(timestamp.us());
}
protected:
virtual timeval CurrentTimeVal() = 0;
private:
NtpTime SystemDependentNtpTime() {
uint32_t seconds;
double fraction;
GetSecondsAndFraction(CurrentTimeVal(), &seconds, &fraction);
return NtpTime(seconds, static_cast<uint32_t>(
fraction * kMagicNtpFractionalUnit + 0.5));
}
bool use_system_independent_ntp_time_;
};
#if defined(WINUWP)
class WinUwpRealTimeClock final : public RealTimeClock {
public:
WinUwpRealTimeClock() = default;
~WinUwpRealTimeClock() override {}
protected:
timeval CurrentTimeVal() override {
// The rtc::WinUwpSystemTimeNanos() method is already time offset from a
// base epoch value and might as be synchronized against an NTP time server
// as an added bonus.
auto nanos = rtc::WinUwpSystemTimeNanos();
struct timeval tv;
tv.tv_sec = rtc::dchecked_cast<long>(nanos / 1000000000);
tv.tv_usec = rtc::dchecked_cast<long>(nanos / 1000);
return tv;
}
};
#elif defined(WEBRTC_WIN)
// TODO(pbos): Consider modifying the implementation to synchronize itself
// against system time (update ref_point_) periodically to
// prevent clock drift.
class WindowsRealTimeClock : public RealTimeClock {
public:
WindowsRealTimeClock()
: last_time_ms_(0),
num_timer_wraps_(0),
ref_point_(GetSystemReferencePoint()) {}
~WindowsRealTimeClock() override {}
protected:
struct ReferencePoint {
FILETIME file_time;
LARGE_INTEGER counter_ms;
};
timeval CurrentTimeVal() override {
const uint64_t FILETIME_1970 = 0x019db1ded53e8000;
FILETIME StartTime;
uint64_t Time;
struct timeval tv;
// We can't use query performance counter since they can change depending on
// speed stepping.
GetTime(&StartTime);
Time = (((uint64_t)StartTime.dwHighDateTime) << 32) +
(uint64_t)StartTime.dwLowDateTime;
// Convert the hecto-nano second time to tv format.
Time -= FILETIME_1970;
tv.tv_sec = (uint32_t)(Time / (uint64_t)10000000);
tv.tv_usec = (uint32_t)((Time % (uint64_t)10000000) / 10);
return tv;
}
void GetTime(FILETIME* current_time) {
DWORD t;
LARGE_INTEGER elapsed_ms;
{
MutexLock lock(&mutex_);
// time MUST be fetched inside the critical section to avoid non-monotonic
// last_time_ms_ values that'll register as incorrect wraparounds due to
// concurrent calls to GetTime.
t = timeGetTime();
if (t < last_time_ms_)
num_timer_wraps_++;
last_time_ms_ = t;
elapsed_ms.HighPart = num_timer_wraps_;
}
elapsed_ms.LowPart = t;
elapsed_ms.QuadPart = elapsed_ms.QuadPart - ref_point_.counter_ms.QuadPart;
// Translate to 100-nanoseconds intervals (FILETIME resolution)
// and add to reference FILETIME to get current FILETIME.
ULARGE_INTEGER filetime_ref_as_ul;
filetime_ref_as_ul.HighPart = ref_point_.file_time.dwHighDateTime;
filetime_ref_as_ul.LowPart = ref_point_.file_time.dwLowDateTime;
filetime_ref_as_ul.QuadPart +=
static_cast<ULONGLONG>((elapsed_ms.QuadPart) * 1000 * 10);
// Copy to result
current_time->dwHighDateTime = filetime_ref_as_ul.HighPart;
current_time->dwLowDateTime = filetime_ref_as_ul.LowPart;
}
static ReferencePoint GetSystemReferencePoint() {
ReferencePoint ref = {};
FILETIME ft0 = {};
FILETIME ft1 = {};
// Spin waiting for a change in system time. As soon as this change happens,
// get the matching call for timeGetTime() as soon as possible. This is
// assumed to be the most accurate offset that we can get between
// timeGetTime() and system time.
// Set timer accuracy to 1 ms.
timeBeginPeriod(1);
GetSystemTimeAsFileTime(&ft0);
do {
GetSystemTimeAsFileTime(&ft1);
ref.counter_ms.QuadPart = timeGetTime();
Sleep(0);
} while ((ft0.dwHighDateTime == ft1.dwHighDateTime) &&
(ft0.dwLowDateTime == ft1.dwLowDateTime));
ref.file_time = ft1;
timeEndPeriod(1);
return ref;
}
Mutex mutex_;
DWORD last_time_ms_;
LONG num_timer_wraps_;
const ReferencePoint ref_point_;
};
#elif defined(WEBRTC_POSIX)
class UnixRealTimeClock : public RealTimeClock {
public:
UnixRealTimeClock() {}
~UnixRealTimeClock() override {}
protected:
timeval CurrentTimeVal() override {
struct timeval tv;
gettimeofday(&tv, nullptr);
return tv;
}
};
#endif // defined(WEBRTC_POSIX)
Clock* Clock::GetRealTimeClock() {
#if defined(WINUWP)
static Clock* const clock = new WinUwpRealTimeClock();
#elif defined(WEBRTC_WIN)
static Clock* const clock = new WindowsRealTimeClock();
#elif defined(WEBRTC_POSIX)
static Clock* const clock = new UnixRealTimeClock();
#else
static Clock* const clock = nullptr;
#endif
return clock;
}
SimulatedClock::SimulatedClock(int64_t initial_time_us)
: time_us_(initial_time_us) {}
SimulatedClock::SimulatedClock(Timestamp initial_time)
: SimulatedClock(initial_time.us()) {}
SimulatedClock::~SimulatedClock() {}
Timestamp SimulatedClock::CurrentTime() {
return Timestamp::Micros(time_us_.load(std::memory_order_relaxed));
}
NtpTime SimulatedClock::ConvertTimestampToNtpTime(Timestamp timestamp) {
int64_t now_us = timestamp.us();
uint32_t seconds = (now_us / 1'000'000) + kNtpJan1970;
uint32_t fractions = static_cast<uint32_t>(
(now_us % 1'000'000) * kMagicNtpFractionalUnit / 1'000'000);
return NtpTime(seconds, fractions);
}
void SimulatedClock::AdvanceTimeMilliseconds(int64_t milliseconds) {
AdvanceTime(TimeDelta::Millis(milliseconds));
}
void SimulatedClock::AdvanceTimeMicroseconds(int64_t microseconds) {
AdvanceTime(TimeDelta::Micros(microseconds));
}
// TODO(bugs.webrtc.org(12102): It's desirable to let a single thread own
// advancement of the clock. We could then replace this read-modify-write
// operation with just a thread checker. But currently, that breaks a couple of
// tests, in particular, RepeatingTaskTest.ClockIntegration and
// CallStatsTest.LastProcessedRtt.
void SimulatedClock::AdvanceTime(TimeDelta delta) {
time_us_.fetch_add(delta.us(), std::memory_order_relaxed);
}
} // namespace webrtc
网友评论