美文网首页深度学习
Python 迭代器与生成器

Python 迭代器与生成器

作者: 庵下桃花仙 | 来源:发表于2019-04-13 21:20 被阅读0次

    http://www.runoob.com/python3/python3-iterator-generator.html

    https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/0014317799226173f45ce40636141b6abc8424e12b5fb27000

    迭代器

    • 迭代是Python最强大的功能之一,是访问集合元素的一种方式。
    • 迭代器是一个可以记住遍历的位置的对象。
    • 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。
    • 迭代器有两个基本的方法:iter() 和 next()。
    • 字符串,列表或元组对象都可用于创建迭代器
    >>>list=[1,2,3,4]
    >>> it = iter(list)    # 创建迭代器对象
    >>> print (next(it))   # 输出迭代器的下一个元素
    1
    >>> print (next(it))
    2
    >>>
    

    迭代器对象可以使用常规for语句进行遍历:

    list=[1,2,3,4]
    it = iter(list)    # 创建迭代器对象
    for x in it:
        print (x, end=" ")
    
    1 2 3 4
    

    也可以使用 next() 函数:

    import sys         # 引入 sys 模块
     
    list=[1,2,3,4]
    it = iter(list)    # 创建迭代器对象
     
    while True:
        try:
            print (next(it))
        except StopIteration:
            sys.exit()
    

    创建一个迭代器

    把一个类作为一个迭代器使用需要在类中实现两个方法 iter() 与 next() 。

    • iter() 方法返回一个特殊的迭代器对象, 这个迭代器对象实现了 next() 方法并通过 StopIteration 异常标识迭代的完成。
    • next() 方法(Python 2 里是 next())会返回下一个迭代器对象。
    class MyNumbers:
      def __iter__(self):
        self.a = 1
        return self
     
      def __next__(self):
        x = self.a
        self.a += 1
        return x
     
    myclass = MyNumbers()
    myiter = iter(myclass)
     
    print(next(myiter))
    print(next(myiter))
    print(next(myiter))
    print(next(myiter))
    print(next(myiter))
    
    1
    2
    3
    4
    5
    

    StopIteration

    StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 next() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。

    class MyNumbers:
      def __iter__(self):
        self.a = 1
        return self
     
      def __next__(self):
        if self.a <= 20:
          x = self.a
          self.a += 1
          return x
        else:
          raise StopIteration
     
    myclass = MyNumbers()
    myiter = iter(myclass)
     
    for x in myiter:
      print(x)
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    

    生成器

    在 Python 中,使用了 yield 的函数被称为生成器(generator)。

    跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

    在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。

    调用一个生成器函数,返回的是一个迭代器对象。

    import sys
     
    def fibonacci(n): # 生成器函数 - 斐波那契
        a, b, counter = 0, 1, 0
        while True:
            if (counter > n): 
                return
            yield a
            a, b = b, a + b
            counter += 1
    f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
     
    while True:
        try:
            print (next(f), end=" ")
        except StopIteration:
            sys.exit()
    
    0 1 1 2 3 5 8 13 21 34 55
    

    generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

    generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

    生成器作用:拿列表来讲,不用创建完整的列表,可以节省大量空间,一边循环一边计算的机制,称为生成器:generator

    可以直接作用于for循环的对象统称为可迭代对象:Iterable;可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
    生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。把list、dict、str等Iterable变成Iterator可以使用iter()函数。

    为什么list、dict、str等数据类型不是Iterator?

    这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

    Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

    小结

    • 凡是可作用于for循环的对象都是Iterable类型;

    • 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

    • 集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

    • Python的for循环本质上就是通过不断调用next()函数实现的

    相关文章

      网友评论

        本文标题:Python 迭代器与生成器

        本文链接:https://www.haomeiwen.com/subject/ygzhwqtx.html