美文网首页操作系统
《深入Linux内核架构》读书笔记-进程管理和调度

《深入Linux内核架构》读书笔记-进程管理和调度

作者: vincent_0425 | 来源:发表于2019-02-10 21:13 被阅读0次

    2.1 进程优先级

    1. 进程分类

    1)硬实时进程: 有严格时间限制
    2)软实时进程,
    3)普通进程:大多数进程

    2.2 进程生命周期

    进程的生命周期可归结为以下三个状态:

    1. 运行:进程正在执行;
    2. 睡眠:进程正在睡眠,不能执行,它在等待一个外部事件;
    3. 等待:进程可以运行,但是需要等到下一任务切换时执行。
      更细致的,从task_struct中state中得到具体状态:
      1)运行时状态:
      TASK_RUNNING:进程处于可运行状态,但并不意味着已实际分配了CPU,而是进程可以无需等待外部条件执行;
      TASK_INTERRUPTIBLE:进程处于睡眠状态,可由外部信号唤醒;
      TASK_UNINTERRUPTIBLE:睡眠状态,但不能有外部信号唤醒,例如IO等待,这种状态主要是为了保持强一致性,例如读取磁盘时若外部信号能中断,那么磁盘读取则会处理不完整状态,影响正常使用。
      __TASK_STOPPED:进程特意停止运行,如由调试器暂停;
      __TASK_TRACED:ptrace跟踪用,在调试时区分常规进程;
      2)退出时状态:exit_state
      EXIT_ZOMBIE: 进程处于僵尸状态。当进程被另一个进程或用户杀死的同时,父进程在该子进程终止时,未调用wait函数,则会出现僵尸进程。
      EXIT_DEAD:指父进程已发出wait调用,但进程还未完全从系统中移除之前的状态

    2.3 进程表示

    进程的表示主要通过task_struct结构:

    struct task_struct {
        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
        void *stack;
        atomic_t usage;
        unsigned int flags; /* per process flags, defined below */
        unsigned int ptrace;
    
        int lock_depth;     /* BKL lock depth */
    
    #ifdef CONFIG_SMP
    #ifdef __ARCH_WANT_UNLOCKED_CTXSW
        int oncpu;
    #endif
    #endif
    
        int prio, static_prio, normal_prio;
        unsigned int rt_priority;
        const struct sched_class *sched_class;
        struct sched_entity se;
        struct sched_rt_entity rt;
    
    #ifdef CONFIG_PREEMPT_NOTIFIERS
        /* list of struct preempt_notifier: */
        struct hlist_head preempt_notifiers;
    #endif
    
        /*
         * fpu_counter contains the number of consecutive context switches
         * that the FPU is used. If this is over a threshold, the lazy fpu
         * saving becomes unlazy to save the trap. This is an unsigned char
         * so that after 256 times the counter wraps and the behavior turns
         * lazy again; this to deal with bursty apps that only use FPU for
         * a short time
         */
        unsigned char fpu_counter;
    #ifdef CONFIG_BLK_DEV_IO_TRACE
        unsigned int btrace_seq;
    #endif
    
        unsigned int policy;
        cpumask_t cpus_allowed;
    
    #ifdef CONFIG_PREEMPT_RCU
        int rcu_read_lock_nesting;
        char rcu_read_unlock_special;
        struct list_head rcu_node_entry;
    #endif /* #ifdef CONFIG_PREEMPT_RCU */
    #ifdef CONFIG_TREE_PREEMPT_RCU
        struct rcu_node *rcu_blocked_node;
    #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
    #ifdef CONFIG_RCU_BOOST
        struct rt_mutex *rcu_boost_mutex;
    #endif /* #ifdef CONFIG_RCU_BOOST */
    
    #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
        struct sched_info sched_info;
    #endif
    
        struct list_head tasks;
    #ifdef CONFIG_SMP
        struct plist_node pushable_tasks;
    #endif
    
        struct mm_struct *mm, *active_mm;
    #ifdef CONFIG_COMPAT_BRK
        unsigned brk_randomized:1;
    #endif
    #if defined(SPLIT_RSS_COUNTING)
        struct task_rss_stat    rss_stat;
    #endif
    /* task state */
        int exit_state;
        int exit_code, exit_signal;
        int pdeath_signal;  /*  The signal sent when the parent dies  */
        /* ??? */
        unsigned int personality;
        unsigned did_exec:1;
        unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
                     * execve */
        unsigned in_iowait:1;
    
    
        /* Revert to default priority/policy when forking */
        unsigned sched_reset_on_fork:1;
    
        pid_t pid;
        pid_t tgid;
    
    #ifdef CONFIG_CC_STACKPROTECTOR
        /* Canary value for the -fstack-protector gcc feature */
        unsigned long stack_canary;
    #endif
    
        /* 
         * pointers to (original) parent process, youngest child, younger sibling,
         * older sibling, respectively.  (p->father can be replaced with 
         * p->real_parent->pid)
         */
        struct task_struct *real_parent; /* real parent process */
        struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
        /*
         * children/sibling forms the list of my natural children
         */
        struct list_head children;  /* list of my children */
        struct list_head sibling;   /* linkage in my parent's children list */
        struct task_struct *group_leader;   /* threadgroup leader */
    
        /*
         * ptraced is the list of tasks this task is using ptrace on.
         * This includes both natural children and PTRACE_ATTACH targets.
         * p->ptrace_entry is p's link on the p->parent->ptraced list.
         */
        struct list_head ptraced;
        struct list_head ptrace_entry;
    
        /* PID/PID hash table linkage. */
        struct pid_link pids[PIDTYPE_MAX];
        struct list_head thread_group;
    
        struct completion *vfork_done;      /* for vfork() */
        int __user *set_child_tid;      /* CLONE_CHILD_SETTID */
        int __user *clear_child_tid;        /* CLONE_CHILD_CLEARTID */
    
        cputime_t utime, stime, utimescaled, stimescaled;
        cputime_t gtime;
    #ifndef CONFIG_VIRT_CPU_ACCOUNTING
        cputime_t prev_utime, prev_stime;
    #endif
        unsigned long nvcsw, nivcsw; /* context switch counts */
        struct timespec start_time;         /* monotonic time */
        struct timespec real_start_time;    /* boot based time */
    /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
        unsigned long min_flt, maj_flt;
    
        struct task_cputime cputime_expires;
        struct list_head cpu_timers[3];
    
    /* process credentials */
        const struct cred __rcu *real_cred; /* objective and real subjective task
                         * credentials (COW) */
        const struct cred __rcu *cred;  /* effective (overridable) subjective task
                         * credentials (COW) */
        struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
    
        char comm[TASK_COMM_LEN]; /* executable name excluding path
                         - access with [gs]et_task_comm (which lock
                           it with task_lock())
                         - initialized normally by setup_new_exec */
    /* file system info */
        int link_count, total_link_count;
    #ifdef CONFIG_SYSVIPC
    /* ipc stuff */
        struct sysv_sem sysvsem;
    #endif
    #ifdef CONFIG_DETECT_HUNG_TASK
    /* hung task detection */
        unsigned long last_switch_count;
    #endif
    /* CPU-specific state of this task */
        struct thread_struct thread;
    /* filesystem information */
        struct fs_struct *fs;
    /* open file information */
        struct files_struct *files;
    /* namespaces */
        struct nsproxy *nsproxy;
    /* signal handlers */
        struct signal_struct *signal;
        struct sighand_struct *sighand;
    
        sigset_t blocked, real_blocked;
        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
        struct sigpending pending;
    
        unsigned long sas_ss_sp;
        size_t sas_ss_size;
        int (*notifier)(void *priv);
        void *notifier_data;
        sigset_t *notifier_mask;
        struct audit_context *audit_context;
    #ifdef CONFIG_AUDITSYSCALL
        uid_t loginuid;
        unsigned int sessionid;
    #endif
        seccomp_t seccomp;
    
    /* Thread group tracking */
        u32 parent_exec_id;
        u32 self_exec_id;
    /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
     * mempolicy */
        spinlock_t alloc_lock;
    
    #ifdef CONFIG_GENERIC_HARDIRQS
        /* IRQ handler threads */
        struct irqaction *irqaction;
    #endif
    
        /* Protection of the PI data structures: */
        raw_spinlock_t pi_lock;
    
    #ifdef CONFIG_RT_MUTEXES
        /* PI waiters blocked on a rt_mutex held by this task */
        struct plist_head pi_waiters;
        /* Deadlock detection and priority inheritance handling */
        struct rt_mutex_waiter *pi_blocked_on;
    #endif
    
    #ifdef CONFIG_DEBUG_MUTEXES
        /* mutex deadlock detection */
        struct mutex_waiter *blocked_on;
    #endif
    #ifdef CONFIG_TRACE_IRQFLAGS
        unsigned int irq_events;
        unsigned long hardirq_enable_ip;
        unsigned long hardirq_disable_ip;
        unsigned int hardirq_enable_event;
        unsigned int hardirq_disable_event;
        int hardirqs_enabled;
        int hardirq_context;
        unsigned long softirq_disable_ip;
        unsigned long softirq_enable_ip;
        unsigned int softirq_disable_event;
        unsigned int softirq_enable_event;
        int softirqs_enabled;
        int softirq_context;
    #endif
    #ifdef CONFIG_LOCKDEP
    # define MAX_LOCK_DEPTH 48UL
        u64 curr_chain_key;
        int lockdep_depth;
        unsigned int lockdep_recursion;
        struct held_lock held_locks[MAX_LOCK_DEPTH];
        gfp_t lockdep_reclaim_gfp;
    #endif
    
    /* journalling filesystem info */
        void *journal_info;
    
    /* stacked block device info */
        struct bio_list *bio_list;
    
    #ifdef CONFIG_BLOCK
    /* stack plugging */
        struct blk_plug *plug;
    #endif
    
    /* VM state */
        struct reclaim_state *reclaim_state;
    
        struct backing_dev_info *backing_dev_info;
    
        struct io_context *io_context;
    
        unsigned long ptrace_message;
        siginfo_t *last_siginfo; /* For ptrace use.  */
        struct task_io_accounting ioac;
    #if defined(CONFIG_TASK_XACCT)
        u64 acct_rss_mem1;  /* accumulated rss usage */
        u64 acct_vm_mem1;   /* accumulated virtual memory usage */
        cputime_t acct_timexpd; /* stime + utime since last update */
    #endif
    #ifdef CONFIG_CPUSETS
        nodemask_t mems_allowed;    /* Protected by alloc_lock */
        int mems_allowed_change_disable;
        int cpuset_mem_spread_rotor;
        int cpuset_slab_spread_rotor;
    #endif
    #ifdef CONFIG_CGROUPS
        /* Control Group info protected by css_set_lock */
        struct css_set __rcu *cgroups;
        /* cg_list protected by css_set_lock and tsk->alloc_lock */
        struct list_head cg_list;
    #endif
    #ifdef CONFIG_FUTEX
        struct robust_list_head __user *robust_list;
    #ifdef CONFIG_COMPAT
        struct compat_robust_list_head __user *compat_robust_list;
    #endif
        struct list_head pi_state_list;
        struct futex_pi_state *pi_state_cache;
    #endif
    #ifdef CONFIG_PERF_EVENTS
        struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
        struct mutex perf_event_mutex;
        struct list_head perf_event_list;
    #endif
    #ifdef CONFIG_NUMA
        struct mempolicy *mempolicy;    /* Protected by alloc_lock */
        short il_next;
        short pref_node_fork;
    #endif
        atomic_t fs_excl;   /* holding fs exclusive resources */
        struct rcu_head rcu;
    
        /*
         * cache last used pipe for splice
         */
        struct pipe_inode_info *splice_pipe;
    #ifdef  CONFIG_TASK_DELAY_ACCT
        struct task_delay_info *delays;
    #endif
    #ifdef CONFIG_FAULT_INJECTION
        int make_it_fail;
    #endif
        struct prop_local_single dirties;
    #ifdef CONFIG_LATENCYTOP
        int latency_record_count;
        struct latency_record latency_record[LT_SAVECOUNT];
    #endif
        /*
         * time slack values; these are used to round up poll() and
         * select() etc timeout values. These are in nanoseconds.
         */
        unsigned long timer_slack_ns;
        unsigned long default_timer_slack_ns;
    
        struct list_head    *scm_work_list;
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
        /* Index of current stored address in ret_stack */
        int curr_ret_stack;
        /* Stack of return addresses for return function tracing */
        struct ftrace_ret_stack *ret_stack;
        /* time stamp for last schedule */
        unsigned long long ftrace_timestamp;
        /*
         * Number of functions that haven't been traced
         * because of depth overrun.
         */
        atomic_t trace_overrun;
        /* Pause for the tracing */
        atomic_t tracing_graph_pause;
    #endif
    #ifdef CONFIG_TRACING
        /* state flags for use by tracers */
        unsigned long trace;
        /* bitmask of trace recursion */
        unsigned long trace_recursion;
    #endif /* CONFIG_TRACING */
    #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
        struct memcg_batch_info {
            int do_batch;   /* incremented when batch uncharge started */
            struct mem_cgroup *memcg; /* target memcg of uncharge */
            unsigned long nr_pages; /* uncharged usage */
            unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
        } memcg_batch;
    #endif
    #ifdef CONFIG_HAVE_HW_BREAKPOINT
        atomic_t ptrace_bp_refcnt;
    #endif
    };
    

    进程管理中需要注意的一些重要成员:
    1、state: 见上文;
    2、资源管理rlim数组,见signal_struct中:

    struct rlimit rlim[RLIM_NLIMITS];
    

    rlimit定义如下:

    struct rlmit {
      unsigned long rlim_cur;  // 进程当前的资源限制,叫软限制
      unsigned long rlim_max; // 进程最大容许值,叫硬限制 
    }
    

    rlim数组的索引标识类型,资源限制可通过查看limits文件得知:

    cat /proc/pid/limits
    

    2.3.1 进程类型

    1、新进程是通过fork、exec系统调用产生的;
    2、clone也可以产生新进程,但是clone主要用于实现线程,它和fork的主要不同点在于父子进程共享的资源不同,本质上是没有任务区别的。

    2.3.2 命名空间

    作用

    不同于KVM或VMWare,Linux的命名空间只使用一个内核在一台物理计算机上运作,只需要很少的资源,便可虚拟化出多台计算机。namespace主要做资源的隔离,正如目前很热门的Docker技术也是使用类似的原理。

    创建方式

    创建方式有三种:
    1、clone() – 实现线程的系统调用,用来创建一个新的进程,并可以通过设计参数达到各类资源的隔离。
    2、unshare() – 使某进程脱离某个namespace
    3、setns() – 把某进程加入到某个namespace

    实现方式

    namespace的实现主要由nsproxy结构:

    struct nsproxy {
        atomic_t count;  // 引用计数,
        struct uts_namespace *uts_ns; // UTS命名空间,包括内核名称版本等信息
        struct ipc_namespace *ipc_ns; // 进程间通信相关信息
        struct mnt_namespace *mnt_ns;  // 文件系统挂载信息
            struct user_namespace *user_ns; // 用于保存限制每个用户资源使用的信息
        struct pid_namespace *pid_ns;  // 进程ID相关信息
        struct net       *net_ns;  // 网络相关命名空间信息
    };
    

    具体可参考:DOCKER基础技术:LINUX NAMESPACE(上)

    2.3.2 进程ID号

    pid.png

    上图很好的阐述了进程ID的结构信息
    首先从task_struct开始:

    struct task_struct {
      ...
      struct pid_link pids[PIDTYPE_MAX];
      ...
    }
    

    其中pids数组是一个将task_struct关联到pid的散列表。

    struct pid_link {
        struct hlist_node node;  用作散列表元素
        struct pid *pid;
    }
    
    struct upid {
        /* Try to keep pid_chain in the same cacheline as nr for find_vpid */
        int nr;  // ID数值
        struct pid_namespace *ns;  // 关联到pid_namespace的指针
        struct hlist_node pid_chain;
    };
    
    struct pid
    {
        atomic_t count;   // 引用计数
        unsigned int level;  // 层级,子命名空间的level为父命名空间level+1
        /* lists of tasks that use this pid */
        struct hlist_head tasks[PIDTYPE_MAX];  // 一个HASH数组,每一项都是一个链表头。分别是PID链表头,进程组ID表头,会话ID表头;
        struct rcu_head rcu;
        struct upid numbers[1]; // 是一个UPID数组,记录对应层级的命名空间中的UPID,所以可以想到,该PID处于第几层,那么这个数组应该有几项(当然都是从0开始)。
    };
    
    enum pid_type
    {
        PIDTYPE_PID,   // 进程PID
        PIDTYPE_PGID,  // 进程组PID
        PIDTYPE_SID,   // 会话PID
        PIDTYPE_MAX
    };
    

    这里没加上TGID的原因是线程组也是一种PID:线程组长PID,再单独定义一个id没有必要。
    upid中关联到pid_namespace,再看看pid_namespace定义:

    struct pid_namespace {
        struct kref kref;  
        struct pidmap pidmap[PIDMAP_ENTRIES];
        int last_pid;
        struct task_struct *child_reaper;
        struct kmem_cache *pid_cachep;
        unsigned int level;
        struct pid_namespace *parent;
    #ifdef CONFIG_PROC_FS
        struct vfsmount *proc_mnt;
    #endif
    #ifdef CONFIG_BSD_PROCESS_ACCT
        struct bsd_acct_struct *bacct;
    #endif
    };
    

    在这里只关注child_reaper指针、level和parent指针。
    其中child_reaper作用类似于fork函数中父进程调用wait系列函数,用于托管进程:就是当父进程先于子进程结束的时候,就把子进程的父进程更新为child_reaper。
    level即为命名空间的层级关系;
    parent:父pid命名空间指针。
    参考文章:Pid NameSpace浅分析

    生成唯一PID

    唯一pid的生成其实是通过一个大的bitmap生成,bitmap有高效、节省空间的作用,本质即是寻找bitmap中第一个为0的比特用于分配新pid。该bitmap可见pid_namespace:

    struct pid_namespace {
        ...
        struct pidmap pidmap[PIDMAP_ENTRIES];
        ...
    }
    
    #define PIDMAP_ENTRIES         ((PID_MAX_LIMIT + 8*PAGE_SIZE - 1)/PAGE_SIZE/8);
    #define PID_MAX_LIMIT (CONFIG_BASE_SMALL ? PAGE_SIZE * 8 : \
        (sizeof(long) > 4 ? 4 * 1024 * 1024 : PID_MAX_DEFAULT));
    

    alloc_pidmap函数用于分配一个PID,而free_pidmap用于地方一个PID,具体见kernel/pid.c

    相关文章

      网友评论

        本文标题:《深入Linux内核架构》读书笔记-进程管理和调度

        本文链接:https://www.haomeiwen.com/subject/yhgxeqtx.html