美文网首页
Android HandlerThread 之源码解析

Android HandlerThread 之源码解析

作者: Anenn | 来源:发表于2016-04-02 17:38 被阅读94次

    关于 HandlerThread 这个类,可能有些人眼睛一瞟,手指放在键盘上,然后就是一阵狂敲,马上就能敲出一段段华丽的代码:

    HandlerThread handlerThread = new HandlerThread("handlerThread");
    handlerThread.start();
    
    Handler handler = new Handler(handlerThread.getLooper()){
        public void handleMessage(Message msg) {
            ...
        }
    };
    handler.sendMessage(***);
    

    仔细一看,没问题啊(我也没说代码有问题啊),那请容许我说一句,“这代码敲也敲完了,原理懂不?”

    为什么要扯这玩意,没什么理由,就是不小心看了这篇文章Android消息循环机制源码分析。学姐说了,源码都没看,没分析,还敢说你懂。原本还觉得自己懂了点,看完这句话,顿时就不确定了。于是,自觉打开了 AS ...

    前言

    首先,先给各位看官打个预防针,待会要讲的东西可能有点多,有点绕,涉及的类包含有:HandlerThread、Thread、Handler、Looper、Message、MessageQueue,可能有些人已经遭不住啦,有种想要关闭网页的冲动。不要慌,刚开始我看源码的时候我也不知道最終会牵扯这么一大串出来,但仔细理一理后,其实就是那么回事。

    一、擒贼先擒王 HandlerThread

    这件事情的源头都是因它而起的,不先找它先找谁。

    首先,HandlerThread 是什么gui,感觉像是 Handler 和 Thread 的结合体。点进源码一看:public class HandlerThread extends Thread {} 没什么好说的,原来是一个线程的子类。那么接下来就要看看这个 HandlerThread 到底有什么特殊之处。

    HandlerThread handlerThread = new HandlerThread("handlerThread");
    handlerThread.start();
    

    跟正常线程的创建、启动步骤一样,线程已启动,那势必会执行其 run() 方法。为了方便下面流程的分析,这里先用代码块1表示:

    #HandlerThread.java
    
    public void run() {
        mTid = Process.myTid();
        Looper.prepare();
        synchronized (this) {
            mLooper = Looper.myLooper();
            notifyAll();
        }
        Process.setThreadPriority(mPriority);
        onLooperPrepared();
        Looper.loop();
        mTid = -1;
    }
    

    其中,Looper 就代表我们经常说的消息循环,Looper.prepare() 就代表消息循环执行前的一些准备工作。

    二、抓捕各种小弟(Looper、MessageQueue、Message)

    既然上面已经谈到Looper,那就来看一下它的几个方法:Looper.prepare() 和 Looper.loop()。
    代码块2

    #Looper.java
    
    public static void prepare() {
        prepare(true);
    }
        
    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }
        
    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }
    
    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
    final MessageQueue mQueue;
    final Thread mThread;
    

    上面一路下来还是挺清晰的,总结一下:因为一个 Thread 只能对应有一个 Looper,所以只有满足条件下才会将 Looper 对象存放在类型为 ThreadLocal<Looper> 的类属性里。当然在这之前还是要先 new 一个 Looper 对象,而在 Looper 的构造方法中又创建了两个对象 ,分别为mQueue(消息队列)和 mThread(当前线程)。整个 prepare 过程其实主要是创建了三个对象:Looper、MessageQueue、Thread。
    好了,Looper.prepare() 这个过程已经分析完了。接着我们再看代码块1,里面有一段同步代码块,目的是为了获取 Looper 对象。方法跳转过去一看,原来就是将之前存进 ThreadLocal<Local> 里的Looper 对象取出 。

    #Looper.java
    
    public static Looper myLooper() {
        return sThreadLocal.get();
    }
    

    接下来最关键的就是 Looper.loop() 这句代码,它也是 HandlerThread 这个类存在的价值所在。只要一执行这句代码,也就代表真正的消息循环开始啦:代码块3

    #Looper.java
    
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;
    
        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
    
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
    
            // This must be in a local variable, in case a UI event sets the logger
            Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
    
            msg.target.dispatchMessage(msg);
    
            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }
    
            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }
    
            msg.recycleUnchecked();
        }
    }
    

    这个方法的作用就是开始从消息队列中循环取出消息。那这个消息队列又从哪来的呢,还记得我们在Looper.prepare() 中创建 Looper 对象的时候在其构造方法中 new 两个对象嘛,一个 MessageQueue,一个Thread。在这里要想使用消息队列,首先需要先获取 Looper 实例,毕竟消息队列 MessageQueue 是作为其成员属性而存在的;接着获得了消息队列的对象,并进入一个貌似死循环的控制流中。这个 for 语句干的事情就是不断的从消息队列 MessageQueue 里取出消息,然后发送出去。具体谁来处理这些消息马上揭晓。下面的代码就是从消息队列中取出消息:

    #Looper.java
    
    Message msg = queue.next()
    

    接下去的内容可能就需要各位看官对数据结构有点了解了,我们一步一步嵌进去看一下。代码块4

    #MessageQueue.java
    
    Message next() {
        ...
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
    
            nativePollOnce(ptr, nextPollTimeoutMillis);
    
            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (false) Log.v("MessageQueue", "Returning message: " + msg);
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
    
                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }
    
                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }
    
                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }
            ...
        }
    }
    

    其它可以先不管,我们直接跳转到 synchronized 这同步代码块里。我们看到Message msg = mMessage; 这个 mMessage 对象就是一个消息 Message,只不过这个 Message 类里面附带了一种数据结构:队列。我们不妨看一下这个类:

    public final class Message implements Parcelable {
        ...
        // sometimes we store linked lists of these things
        /*package*/ Message next;   
        ...
    }
    

    不难看出,Message 类中包含了一个 Message 类型的属性,作用就是指向下一条消息,依次类推,最終形成一个消息队列。只不过这里队列中的消息是要经过特殊处理的,并不是每进来一条消息就直接添加在队列尾部。因为 Android 系统中的消息是有时间机制的,每条消息都会附加一个时间,这也是handler.sendMessageDelayed() 存在的意义。

    接着看代码块4,先是对 msg 和 msg.target 进行判断,只要消息队列中的消息不为空,同时出对的消息的触发时间小于当前系统的时间,那么这个消息就回被取出来作为待发送的对象。这里 msg.target 是非常重要的,我们之所以能 handleMessage 全靠它,下面会分析到。

    然后回到代码块3,通过

    Message msg = queue.next(); // might block

    拿到消息后,再由 msg.target 将消息分发出去

    msg.target.dispatchMessage(msg);

    那这个 msg.target 到底是个什么东西。看属性定义

    /*package*/ Handler target;

    居然是一个 Handler,通过它将消息分发出去,我们再看一下是怎样分发的:

    #Handler.java
    
    /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
    

    是不是有种茅塞顿开的感觉。在这我就直接透漏一下,Message 中的 callback 其实就是一个 Runnable 对象,handleCallback(msg); 就是执行其 run() 方法。这也是为什么我们可以通过 handler.post(new Runnable(){...})来发送消息,其实就是把Runnable对象赋给了Message的Callback 属性。而如果是正常的 handler.sendMessage(),那么肯定就是执行下面的语句咯。我们可以在创建 Handler 对象的时候指定一个回调接口 Callback。当然不指定也没事,我们最終还是可以通过 handleMessage(msg) 来获取待处理的消息。最后,我们还是要对这条消息进行回收重用的嘛msg.recycleUnchecked();

    好了,关于Looper.prepare() 和 Looper.loop() 这两个方法就介绍到这。我们再来补充一下,消息队列之所以有消息,那肯定得有谁提供瑟。答案就是 Handler。我们经常的操作就是handler.sendMessage(msg);代码块5

    #Handler.java
    
    public final boolean sendMessage(Message msg) {
        return sendMessageDelayed(msg, 0);
    }
    
    public final boolean sendMessageDelayed(Message msg, long delayMillis){
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
    
    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }
    
    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
    
    #MessageQueue.java
    
    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }
    
        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w("MessageQueue", e.getMessage(), e);
                msg.recycle();
                return false;
            }
    
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
    
            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
    

    我觉得我也没什么好说的,赤裸裸的将流程一步一步的贴出来。一句话,对传入进来的 Message 进行封装,什么 msg.when、msg.target,通通在这里搞定。现在仔细回想 Looper.loop() 里面对 msg 的处理,之前的各种❓是不就烟消云散啦。后面就顶多就是将消息入队,入队前就如我前面所说的那样,要根据 msg.when 的时间进行入队,然后插入到合适的位置中去。

    总结

    至此,整个消息循环机制就分析完啦,原始代码:

    HandlerThread handlerThread = new HandlerThread("handlerThread");
    handlerThread.start();
    
    Handler handler = new Handler(handlerThread.getLooper()){
        public void handleMessage(Message msg) {
            ...
        }
    };
    handler.sendMessage(***);
    

    再看一下具体操作流程:

    1. handlerThread.start() -> Looper.prepare() -> Looper.loop() -> queue.next() -> msg.target.dispatchMessage(msg) -> handleMessage(msg)
    2. handler.sendMessage(msg) -> queue.enqueueMessage(msg)

    由于上面的一切操作都是在一个新线程的 run() 方法中执行,所以不会阻塞 UI 线程,分析完毕。
    这时可能有些人就站出来了,这 HandlerThread 感觉也没啥啊,我直接用 Thread 也可以搞定一切。设想一下,加入现在有10个后台任务需要执行,按照传统的做法就是执行10遍 new Thread(某个Runnable对象).start() 首先你是创建了10个匿名对象,这资源消耗多少暂且不说,你还不能很好的控制它们,这样很容易造成内存泄漏。若是将这些后台任务打包成成一个个 Message 然后再发送出去,首先是线程可以得到重用,再者我们还可以 remove 掉消息队列中的消息,再一定程度上避免了内存泄漏。好了,该说的都说完了,可能需要各位看官自己脑补一下、消化一下。

    相关文章

      网友评论

          本文标题:Android HandlerThread 之源码解析

          本文链接:https://www.haomeiwen.com/subject/yiaylttx.html