MacOS平台编译
- clone tensorflow repositories
git clone https://github.com/tensorflow/tensorflow.git tensorflow_src
- download all build dependencies
./tensorflow/lite/tools/make/download_dependencies.sh
- build tensorflow-lite
cmake ../tensorflow_src/tensorflow/lite
cmake --build .
libtensorflow-lite.a需要的额外库路径tensorflow_src/_deps/xxx-build/xxx.a
Ubuntu平台编译
- install necessary library
sudo apt-get install build-essential
sudo apt-get install zlib1g-dev
sudo apt install libgles2-mesa-dev
- download all build dependencies
./tensorflow/lite/tools/make/download_dependencies.sh
- build tensorflow-lite
./tensorflow/lite/tools/make/build_lib.sh
Ubuntu环境编译动态库脚本
#!/bin/sh
set -e
#set -x
export TENSORFLOW_VER=r2.4
export TENSORFLOW_DIR=`pwd`/tensorflow_${TENSORFLOW_VER}
git clone -b ${TENSORFLOW_VER} https://github.com/tensorflow/tensorflow.git ${TENSORFLOW_DIR}
cd ${TENSORFLOW_DIR}
# install Bazel 3.1.0
wget https://github.com/bazelbuild/bazel/releases/download/3.1.0/bazel-3.1.0-installer-linux-x86_64.sh
chmod 755 bazel-3.1.0-installer-linux-x86_64.sh
sudo ./bazel-3.1.0-installer-linux-x86_64.sh
# clean up bazel cache, just in case.
bazel clean
echo "----------------------------------------------------"
echo " (configure) press ENTER-KEY several times. "
echo "----------------------------------------------------"
./configure
# ---------------
# Makefile build
# ---------------
# download all the build dependencies.
./tensorflow/lite/tools/make/download_dependencies.sh 2>&1 | tee -a log_download_dependencies.txt
# build TensorFlow Lite library (libtensorflow-lite.a)
./tensorflow/lite/tools/make/build_lib.sh EXTRA_CXXFLAGS="-march=native" 2>&1 | tee -a log_build_libtflite_make.txt
# ---------------
# Bazel build
# ---------------
# build with Bazel (libtensorflowlite.so)
bazel build -s -c opt //tensorflow/lite:libtensorflowlite.so 2>&1 | tee -a log_build_libtflite_bazel.txt
# build GPU Delegate library (libdelegate.so)
bazel build -s -c opt --copt="-DMESA_EGL_NO_X11_HEADERS" --copt="-DEGL_NO_X11" tensorflow/lite/delegates/gpu:libtensorflowlite_gpu_delegate.so 2>&1 | tee -a log_build_delegate.txt
echo "----------------------------------------------------"
echo " build success."
echo "----------------------------------------------------"
cd ${TENSORFLOW_DIR}
#ls -l tensorflow/lite/tools/make/gen/linux_x86_64/lib/
ls -l bazel-bin/tensorflow/lite/
ls -l bazel-bin/tensorflow/lite/delegates/gpu/
遇到问题
virtual memory exhausted: Cannot allocate memory
解决:内存太小,用swap扩展内存的方法
[root@Byrd byrd]# free -m
total used free shared buffers cached
Mem: 512 108 403 0 0 28
-/+ buffers/cache: 79 432
Swap: 0 0 0
[root@Byrd ~]# mkdir /opt/images/
[root@Byrd ~]# rm -rf /opt/images/swap
[root@Byrd ~]# dd if=/dev/zero of=/opt/images/swap bs=1024 count=2048000
2048000+0 records in
2048000+0 records out
2097152000 bytes (2.1 GB) copied, 82.7509 s, 25.3 MB/s
[root@Byrd ~]# mkswap /opt/images/swap
mkswap: /opt/images/swap: warning: don't erase bootbits sectors
on whole disk. Use -f to force.
Setting up swapspace version 1, size = 2047996 KiB
no label, UUID=59daeabb-d0c5-46b6-bf52-465e6b05eb0b
[root@hz mnt]# swapon /opt/images/swap
[root@hz mnt]# free -m
total used free shared buffers cached
Mem: 488 481 7 0 6 417
-/+ buffers/cache: 57 431
Swap: 999 0 999
使用完毕后可以关掉swap:
[root@hz mnt]# swapoff swap
[root@hz mnt]# rm -f /opt/images/swap
参考链接
网友评论