转载请注明出处:https://www.jianshu.com/p/5e59a9edcc1e
Handler经常被我们用来在主线程和子线程之间传递消息,因此这里打算从源码的角度分析下它的使用,也算是进军源码的一个开端!为了使整个分析过程比较的有条理,便从一个最简单的使用场景(代码如下:)着手,顺着源码来看Message的传递流程。
public class MainActivity extends AppCompatActivity {
public static final String MSG = "msg";
// 注意内存泄露的问题
Handler handler = new Handler(){
@Override
public void handleMessage(Message msg) {
Toast.makeText(MainActivity.this, msg.getData().getString(MSG), Toast.LENGTH_SHORT).show();
}
};
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
new Thread(new Runnable() {
@Override
public void run() {
SystemClock.sleep(2000);
Message msg = Message.obtain();
Bundle bundle= new Bundle();
bundle.putString(MSG,"子线程发送的消息!");
msg.setData(bundle);
handler.sendMessage(msg);
}
}).start();
}
}
Handler中的消息处理机制主要包含四个类:
- Message消息对象
- Handler消息处理器
- MessageQueue消息队列
- Looper消息轮询器
一、消息机制的初始化
在启动UI主线程ActivityThread(\frameworks\base\core\java\android\app\ActivityThread.java)会执行下面的main方法:
public static void main(String[] args) {
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
// CloseGuard defaults to true and can be quite spammy. We
// disable it here, but selectively enable it later (via
// StrictMode) on debug builds, but using DropBox, not logs.
CloseGuard.setEnabled(false);
Environment.initForCurrentUser();
// Set the reporter for event logging in libcore
EventLogger.setReporter(new EventLoggingReporter());
// Make sure TrustedCertificateStore looks in the right place for CA certificates
final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
TrustedCertificateStore.setDefaultUserDirectory(configDir);
Process.setArgV0("<pre-initialized>");
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
// 创建H extends Handler对象,H类中定义了许多跟Activity生命周期相关的常量。
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
1.1,Looper.prepareMainLooper()
在main方法中调用了Looper.prepareMainLooper()
,从下面的源码中可以看出最终调用的还是prepare()
方法,并且用ThreadLocal保存了Looper的对象,这样能够保证每个Looper对象都与线程对应,并且从抛出的异常信息中可以知道消息机制的一个重要特点:每个线程中只能创建一个Looper对象。
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
Looper的构造方法中创建了MessageQueue的实例
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
Looper.prepare()方法实例化了Looper和MessageQueue对象。
1.2,Looper.loop()
在main方法的最后执行Looper.loop()进入死循环,其中queue.next()
是一个阻塞式方法,直到消息队列中获取到Message对象才会执行后面的dispatchMessage(msg)
来处理消息。
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
......
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
......
try {
msg.target.dispatchMessage(msg);
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
......
// 将msg回收到对象池中,便于下次复用
msg.recycleUnchecked();
}
}
二、Handler的创建
Handler的创建除了示例中的匿名内部类方式,还可以通过实现Callback的方式来创建。这两种方法本质上是一样的,只不过一提到接口就想到多继承扩展啥的。另外,在消息的处理上略有不同,在后面会讲到。
public Handler() {
this(null, false);
}
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
三、Message的创建
3.1,Message的数据结构
先看Message类的定义,Message中除了包括传递数据所用的变量what、data、when外,还定义了一个next的引用,这说明Message是一个链表的数据结构,而MessageQueue虽说叫一个消息队列,实际上是个链表。另外,Messge中为了避免重复的创建Message对象造成内存的抖动,也提供了一个复用的对象池,最多容纳50个对象。
public final class Message implements Parcelable {
public int what;
......
/*package*/ long when;
/*package*/ Bundle data;
/*package*/ Handler target;
/*package*/ Runnable callback;
// sometimes we store linked lists of these things
/*package*/ Message next;
private static Message sPool;
private static int sPoolSize = 0;
private static final int MAX_POOL_SIZE = 50;
......
}
3.2,Message.obtain()
该方法中会先判断对象池中是否有可复用的Message对象,如果有就从链表头部取出一个Message对象返回,否则就会重新创建一个Message对象。除了这个无参的方法,还有7个重载方法,这些重载方法无非就是加了一些初始化参数并且都调用了obtain()
方法。
/**
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
*/
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
四、Message的发送
4.1,sendMessage()
消息创建完后就可以通过handler将消息发送出去,主要有sendXxx(),sendEmptyXxx(),postXxx()三类方法,sendXxx方法是在调用之前就初始化好了Message对象,后面两类方法是在执行过程中封装的Message对象。
- sendXxx():该系列方法最终调用的都是
sendMessageAtTime(msg,uptimeMills)
。从源代码中可以知道延迟执行的时间不能小于0,并且要求MessageQueue必须先实例化。
// 发送立即处理的消息
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
// 发送延迟执行的消息
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
// 发送在制定时间点执行的消息
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
// 特殊情况下使用,该方法仅仅是将uptimeMills置为0
public final boolean sendMessageAtFrontOfQueue(Message msg) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, 0);
}
- sendEmptyXxx()和postXxx():该系列的方法基本上都有与之对应的sendXxx()方法。
public final boolean sendEmptyMessage(int what);
public final boolean sendEmptyMessageDelayed(int what, long delayMillis);
public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis);
// Runnable对象会赋值给callback
public final boolean post(Runnable r);
public final boolean postAtTime(Runnable r, long uptimeMillis);
public final boolean postAtTime(Runnable r, Object token, long uptimeMillis);
public final boolean postDelayed(Runnable r, long delayMillis);
public final boolean postAtFrontOfQueue(Runnable r);
这里以post(Runnable r)
方法为例,其它的都差不多。msg中的callback指向了该Runnable对象,后面在处理的时候会直接调用里面的run方法。
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
4.2,enqueueMessage()
从上面的的sendMessageAtTime()
得知会调用enqueueMessage()
,源码如下。在这里将当前Handler的引用this赋值给了msg.target
(其实这是为了避免在创建多个Handler对象的情况下消息的冲突)。
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
MessageQueue中enqueueMessage()
需要遍历单链表将msg插入到链表中,并且还要判断是否该唤醒主线程,即next()方法。
boolean enqueueMessage(Message msg, long when) {
......
synchronized (this) {
.....
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// 将msg插入到队列中
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
五、Message的处理
5.1,next()
当执行nativeWake(mPtr)
方法唤醒了主线程,MessageQueue的next()
方法(该方法是在Looper.loop()中调用的,前面有相关源码)就会从链表中取出消息。
Message next() {
......
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
......
}
}
5.2,dispatchMessage()
在Looper.loop()
方法中会调用dispatchMessage()
,具体的源码如下。并且这个方法是在主线程中调用的,因此消息就从子线程传递到了UI线程中啦。
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
分为三种情况来处理消息:
- post一个Runnable对象:该方式会执行
handleCallback()
,即执行Runnable中run方法。
private static void handleCallback(Message message) {
message.callback.run();
}
- 实现Callback接口:mCallback是在Handler创建的时候初始化的,需要自己去实现这个内部接口。需要注意的是:这个接口中的方法比Handler中的空方法
void handleMessage(Message msg){}
多了个boolean类型的返回值。
public interface Callback {
public boolean handleMessage(Message msg);
}
- 发送普通的Message对象:该方式直接调用自己实现的
handleMessage()
方法。当然,这个方法的执行与否还与前面的两种情况有关。
5.3,recycleUnchecked()
在msg消息处理完成之后,就会执行recycleUnchecked()
方法完成的这个msg的复用。该方法会将msg对象中成员变量还原,并采用头插法将msg插入到对象池(Message.sPool)中。
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
六、总结
Handler不仅仅只有上面一种使用场景,还可以用于子线程和子线程,子线程和主线程的通信,只是在使用时要注意以下几点:
- 在子线程使用时中需调用
Looper.prepare()
方法来初始化Looper和MessageQueue; - 在子线程使用时中需调用
Looper.loop()
方法来轮询消息队列; - 一个线程中只能有一个Looper对象;
- 一个线程中可以创建多个Handler对象;
- 第五部分中消息处理的集中情况(本来想画个流程图但是源码中已经很清晰就懒得画了)
参考资料
Android7.0源码
网友评论