对离散型特征进行one-hot编码是为了让距离的计算显得更加合理。
离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化
对于离散型特征,基于树的方法是不需要使用one-hot编码的,例如随机森林等。基于距离的模型,都是要使用one-hot编码,例如神经网络等。
基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等。基于参数的模型或基于距离的模型,都是要进行特征的归一化。
网友评论