美文网首页
Python--pandas--DataFrame的CURD操作

Python--pandas--DataFrame的CURD操作

作者: 李小李的路 | 来源:发表于2019-06-06 00:07 被阅读0次

DataFrame数据准备

  • 增、删、改、查的方法有很多很多种,这里只展示出常用的几种。
  • 参数inplace默认为False,只能在生成的新数据块中实现编辑效果。当inplace=True时执行内部编辑,不返回任何值,原数据发生改变。
import numpy as np
import pandas as pd

#测试数据。
df = pd.DataFrame(data = [['lisa','f',22],['joy','f',22],['tom','m','21']],index = [1,2,3],columns = ['name','sex','age'])
'''
   name sex age
1  lisa   f  22
2   joy   f  22
3   tom   m  21
'''

增加操作

按列增加

citys = ['ny','zz','xy']
df.insert(0,'city',citys) #在第0列,加上column名称为city,值为citys的数值。
jobs = ['student','AI','teacher']
df['job'] = jobs #默认在df最后一列加上column名称为job,值为jobs的数据。
df.loc[:,'salary'] = ['1k','2k','2k','2k','3k'] #在df最后一列加上column名称为salary,值为等号右边数据。

按行增加

#若df中没有index为“4”的这一行的话,该行代码作用是往df中加一行index为“4”,值为等号右边值的数据。若df中已经有index为“4”的这一行,则该行代码作用是把df中index为“4”的这一行修改为等号右边数据。
df.loc[4] = ['zz','mason','m',24,'engineer’]
df_insert = pd.DataFrame({'name':['mason','mario'],'sex':['m','f'],'age':[21,22]},index = [4,5])
#返回添加后的值,并不会修改df的值。ignore_index默认为False,意思是不忽略index值,即生成的新的ndf的index采用df_insert中的index值。若为True,则新的ndf的index值不使用df_insert中的index值,而是自己默认生成。
ndf = df.append(df_insert,ignore_index = True) 

查操作

(1)方法一:df['column_name'] 和df[row_start_index, row_end_index]

df['name']
df['gender']
df[['name','gender']] #选取多列,多列名字要放在list里
df[0:]    #第0行及之后的行,相当于df的全部数据,注意冒号是必须的
df[:2]    #第2行之前的数据(不含第2行)
df[0:1]   #第0行
df[1:3]   #第1行到第2行(不含第3行)
df[-1:]   #最后一行
df[-3:-1] #倒数第3行到倒数第1行(不包含最后1行即倒数第1行,这里有点烦躁,因为从前数时从第0行开始,从后数就是-1行开始,毕竟没有-0)

(2)方法二:df.loc[index,column]

# df.loc[index, column_name],选取指定行和列的数据
df.loc[0,'name'] # 'Snow'
df.loc[0:2, ['name','age']]          #选取第0行到第2行,name列和age列的数据, 注意这里的行选取是包含下标的。
df.loc[[2,3],['name','age']]          #选取指定的第2行和第3行,name和age列的数据
df.loc[df['gender']=='M','name']      #选取gender列是M,name列的数据
df.loc[df['gender']=='M',['name','age']] #选取gender列是M,name和age列的数据

(3)方法三:iloc[row_index, column_index]

df.iloc[0,0]         #第0行第0列的数据,'Snow'
df.iloc[1,2]         #第1行第2列的数据,32
df.iloc[[1,3],0:2]   #第1行和第3行,从第0列到第2列(不包含第2列)的数据
df.iloc[1:3,[1,2]    #第1行到第3行(不包含第3行),第1列和第2列的数据

改操作

改行列标题

df.columns = ['name','gender','age'] #尽管我们只想把’sex’改为’gender’,但是仍然要把所有的列全写上,否则报错。
df.rename(columns = {'name':'Name','age':'Age'},inplace = True) #只修改name和age。inplace若为True,直接修改df,否则,不修改df,只是返回一个修改后的数据。
df.index = list('abc')#把index改为a,b,c.直接修改了df。
df.rename({1:'a',2:'b',3:'c'},axis = 0,inplace = True)#无返回值,直接修改df的index。

改数值

使用ioc

df.loc[1,'name'] = 'aa'              #修改index为‘1’,column为‘name’的那一个值为aa。
df.loc[1] = ['bb','ff',11]           #修改index为‘1’的那一行的所有值。
df.loc[1,['name','age']] = ['bb',11] #修改index为‘1’,column为‘name’的那一个值为bb,age列的值为11。

使用iloc[row_index, column_index]

df.iloc[1,2] = 19              #修改某一无素
df.iloc[:,2] = [11,22,33]      #修改一整列
df.iloc[0,:] = ['lily','F',15] #修改一整行

删操作

删除行

df.drop([1,3],axis = 0,inplace = False)#删除index值为1和3的两行,

删除列

df.drop(['name'],axis = 1,inplace = False)  #删除name列。
del df['name']       #删除name列。
ndf = df.pop('age')  #删除age列,操作后,df都丢掉了age列,age列返回给了ndf。

相关文章

  • Python--pandas--DataFrame的CURD操作

    DataFrame数据准备 增、删、改、查的方法有很多很多种,这里只展示出常用的几种。 参数inplace默认为F...

  • Python day24_mysql数据库

    mysql 数据库的操作 数据表的操作 增删改查(curd)

  • 一行代码实现FMDB的CURD操作

    上次实现FMDB的CURD基本操作后,用在项目里,每个实体类都要写SQL语句来实现创建表和CURD操作,总觉得太麻...

  • 模型操作(CURD)

    语法:类名.query.xxx 获取查询集: 数据操作:在事务中处理,数据插入 修改和删除基于查询 模型展示 向学...

  • 数据库相关

    一、 数据库的操作 二、 数据表的操作 三、 增删改查(curd)

  • 2019-04-12

    基本概念 基本指令 插入文档操作 查询 修改 删除 CURD操作返回的结果 练习

  • JAVA操作Hbase的CURD操作

    这篇文章简要总结JAVA中常用的操作Hbase函数,与之前提到的基本操作不同,本节所介绍的CURD操作不借助于管理...

  • Restful API

    1、用复数名词,不能用动词,动词由CURD方法提供2、CURD操作方法有:GET: 获取资源POST: 新建资源P...

  • MyBatis系列之映射文件之CURD操作

    CURD操作分别指的是创建(Create)、更新(Update)、读取(Retrieve)和删除(Delete)操...

  • 使用thinkjs CURD操作

    thinkjs是一款nodejs的web开发框架,其api模仿thinkphp而易于上手,相对于express等目...

网友评论

      本文标题:Python--pandas--DataFrame的CURD操作

      本文链接:https://www.haomeiwen.com/subject/ynpexctx.html