美文网首页
用keras_bert实现多输出、参数共享模型

用keras_bert实现多输出、参数共享模型

作者: 张胜东 | 来源:发表于2021-03-21 18:18 被阅读0次

    背景

    在nlp领域,预训练模型bert可谓是红得发紫。

    但现在能搜到的大多数都是pytorch写的框架,而且大多都是单输出模型。

    所以,本文以 有相互关系的多层标签分类 为背景,用keras设计了多输出、参数共享的模型。

    keras_bert基础应用

    def batch_iter(data_path, cat_to_id, tokenizer, batch_size=64, shuffle=True):
        """生成批次数据"""
        keras_bert_iter = get_keras_bert_iterator(data_path, cat_to_id, tokenizer)
        while True:
            data_list = []
            for _ in range(batch_size):
                data = next(keras_bert_iter)
                data_list.append(data)
            if shuffle:
                random.shuffle(data_list)
            
            indices_list = []
            segments_list = []
            label_index_list = []
            for data in data_list:
                indices, segments, label_index = data
                indices_list.append(indices)
                segments_list.append(segments)
                label_index_list.append(label_index)
    
            yield [np.array(indices_list), np.array(segments_list)], np.array(label_index_list)
    
    def get_model(label_list):
        K.clear_session()
        
        bert_model = load_trained_model_from_checkpoint(bert_paths.config, bert_paths.checkpoint, seq_len=text_max_length)  #加载预训练模型
     
        for l in bert_model.layers:
            l.trainable = True
     
        input_indices = Input(shape=(None,))
        input_segments = Input(shape=(None,))
     
        bert_output = bert_model([input_indices, input_segments])
        bert_cls = Lambda(lambda x: x[:, 0])(bert_output) # 取出[CLS]对应的向量用来做分类
        output = Dense(len(label_list), activation='softmax')(bert_cls)
     
        model = Model([input_indices, input_segments], output)
        model.compile(loss='sparse_categorical_crossentropy',
                      optimizer=Adam(1e-5),    #用足够小的学习率
                      metrics=['accuracy'])
        print(model.summary())
        return model
    
    early_stopping = EarlyStopping(monitor='val_acc', patience=3)   #早停法,防止过拟合
    plateau = ReduceLROnPlateau(monitor="val_acc", verbose=1, mode='max', factor=0.5, patience=2) #当评价指标不在提升时,减少学习率
    checkpoint = ModelCheckpoint('trained_model/keras_bert_THUCNews.hdf5', monitor='val_acc',verbose=2, save_best_only=True, mode='max', save_weights_only=True) #保存最好的模型
    
    def get_step(sample_count, batch_size):
        step = sample_count // batch_size
        if sample_count % batch_size != 0:
            step += 1
        return step
    
    batch_size = 4
    train_step = get_step(train_sample_count, batch_size)
    dev_step = get_step(dev_sample_count, batch_size)
    
    train_dataset_iterator = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size)
    dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, batch_size)
    
    model = get_model(categories)
    
    #模型训练
    model.fit(
        train_dataset_iterator,
        steps_per_epoch=train_step,
        epochs=10,
        validation_data=dev_dataset_iterator,
        validation_steps=dev_step,
        callbacks=[early_stopping, plateau, checkpoint],
        verbose=1
    )
    

    多输出、参数共享的模型设计

    def batch_iter(data_path, cat_to_id, tokenizer, second_label_list, batch_size=64, shuffle=True):
        """生成批次数据"""
        keras_bert_iter = get_keras_bert_iterator(data_path, cat_to_id, tokenizer, second_label_list)
        while True:
            data_list = []
            for _ in range(batch_size):
                data = next(keras_bert_iter)
                data_list.append(data)
            if shuffle:
                random.shuffle(data_list)
            
            indices_list = []
            segments_list = []
            label_index_list = []
            second_label_list = []
            for data in data_list:
                indices, segments, label_index, second_label = data
                indices_list.append(indices)
                segments_list.append(segments)
                label_index_list.append(label_index)
                second_label_list.append(second_label)
    
            yield [np.array(indices_list), np.array(segments_list)], [np.array(label_index_list), np.array(second_label_list)]
    
    def get_model(label_list, second_label_list):
        K.clear_session()
        
        bert_model = load_trained_model_from_checkpoint(bert_paths.config, bert_paths.checkpoint, seq_len=text_max_length)  #加载预训练模型
     
        for l in bert_model.layers:
            l.trainable = True
     
        input_indices = Input(shape=(None,))
        input_segments = Input(shape=(None,))
     
        bert_output = bert_model([input_indices, input_segments])
        bert_cls = Lambda(lambda x: x[:, 0])(bert_output) # 取出[CLS]对应的向量用来做分类
        output = Dense(len(label_list), activation='softmax')(bert_cls)
        output_second = Dense(len(second_label_list), activation='softmax')(bert_cls)
     
        model = Model([input_indices, input_segments], [output, output_second])
        model.compile(loss='sparse_categorical_crossentropy',
                      optimizer=Adam(1e-5),    #用足够小的学习率
                      metrics=['accuracy'])
        print(model.summary())
        return model
    
    batch_size = 4
    train_step = get_step(train_sample_count, batch_size)
    dev_step = get_step(dev_sample_count, batch_size)
    
    train_dataset_iterator = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, second_label_list, batch_size)
    dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, second_label_list, batch_size)
    
    model = get_model(categories, second_label_list)
    
    #模型训练
    model.fit(
        train_dataset_iterator,
        steps_per_epoch=train_step,
        epochs=10,
        validation_data=dev_dataset_iterator,
        validation_steps=dev_step,
        callbacks=[early_stopping, plateau, checkpoint],
        verbose=1
    )
    

    附录

    全部源码

    import os
    import sys
    import re
    from collections import Counter
    import random
    
    from tqdm import tqdm
    import numpy as np
    import tensorflow.keras as keras
    from keras_bert import load_vocabulary, load_trained_model_from_checkpoint, Tokenizer, get_checkpoint_paths
    from keras_bert.layers import MaskedGlobalMaxPool1D
    from keras_bert import load_trained_model_from_checkpoint, Tokenizer
    from keras.metrics import top_k_categorical_accuracy
    from keras.layers import *
    from keras.callbacks import *
    from keras.models import Model
    import keras.backend as K
    from keras.optimizers import Adam
    from keras.utils import to_categorical
    
    
    
    data_path = "000_text_classifier_tensorflow_textcnn/THUCNews/"
    text_max_length = 512
    bert_paths = get_checkpoint_paths(r"chinese_L-12_H-768_A-12")
    
    
    
    
    
    
    
    
    

    构建原数据文本迭代器

    def _read_file(filename):
        """读取一个文件并转换为一行"""
        with open(filename, 'r', encoding='utf-8') as f:
            s = f.read().strip().replace('\n', '。').replace('\t', '').replace('\u3000', '')
            return re.sub(r'。+', '。', s)
    
    def get_data_iterator(data_path):
        for category in os.listdir(data_path):
            category_path = os.path.join(data_path, category)
            for file_name in os.listdir(category_path):
                yield _read_file(os.path.join(category_path, file_name)), category
    
    it = get_data_iterator(data_path)
    
    next(it)
    
    ('竞彩解析:日本美国争冠死磕 两巴相逢必有生死。周日受注赛事,女足世界杯决赛、美洲杯两场1/4决赛毫无疑问是全世界球迷和彩民关注的焦点。本届女足世界杯的最大黑马日本队能否一黑到底,创造亚洲奇迹?女子足坛霸主美国队能否再次“灭黑”成功,成就三冠伟业?巴西、巴拉圭冤家路窄,谁又能笑到最后?诸多谜底,在周一凌晨就会揭晓。日本美国争冠死磕。本届女足世界杯,是颠覆与反颠覆之争。夺冠大热门东道主德国队1/4决赛被日本队加时赛一球而“黑”,另一个夺冠大热门瑞典队则在半决赛被日本队3:1彻底打垮。而美国队则捍卫着女足豪强的尊严,在1/4决赛,她们与巴西女足苦战至点球大战,最终以5:3淘汰这支迅速崛起的黑马球队,而在半决赛,她们更是3:1大胜欧洲黑马法国队。美日两队此次世界杯进程惊人相似,小组赛前两轮全胜,最后一轮输球,1/4决赛同样与对手90分钟内战成平局,半决赛竟同样3:1大胜对手。此次决战,无论是日本还是美国队夺冠,均将创造女足世界杯新的历史。两巴相逢必有生死。本届美洲杯,让人大跌眼镜的事情太多。巴西、巴拉圭冤家路窄似乎更具传奇色彩。两队小组赛同分在B组,原本两个出线大热门,却双双在前两轮小组赛战平,两队直接交锋就是2:2平局,结果双双面临出局危险。最后一轮,巴西队在下半场终于发威,4:2大胜厄瓜多尔后来居上以小组第一出线,而巴拉圭最后一战还是3:3战平委内瑞拉获得小组第三,侥幸凭借净胜球优势挤掉A组第三名的哥斯达黎加,获得一个八强席位。在小组赛,巴西队是在最后时刻才逼平了巴拉圭,他们的好运气会在淘汰赛再显神威吗?巴拉圭此前3轮小组赛似乎都缺乏运气,此番又会否被幸运之神补偿一下呢?。另一场美洲杯1/4决赛,智利队在C组小组赛2胜1平以小组头名晋级八强;而委内瑞拉在B组是最不被看好的球队,但竟然在与巴西、巴拉圭同组的情况下,前两轮就奠定了小组出线权,他们小组3战1胜2平保持不败战绩,而入球数跟智利一样都是4球,只是失球数比智利多了1个。但既然他们面对强大的巴西都能保持球门不失,此番再创佳绩也不足为怪。',
     '彩票')
    
    
    
    
    
    
    
    
    

    构建标签表

    def read_category(data_path):
        """读取分类目录,固定"""
        categories = os.listdir(data_path)
    
        cat_to_id = dict(zip(categories, range(len(categories))))
    
        return categories, cat_to_id
    
    categories, cat_to_id = read_category(data_path)
    
    cat_to_id
    
    {'彩票': 0,
     '家居': 1,
     '游戏': 2,
     '股票': 3,
     '科技': 4,
     '社会': 5,
     '财经': 6,
     '时尚': 7,
     '星座': 8,
     '体育': 9,
     '房产': 10,
     '娱乐': 11,
     '时政': 12,
     '教育': 13}
    
    categories
    
    ['彩票',
     '家居',
     '游戏',
     '股票',
     '科技',
     '社会',
     '财经',
     '时尚',
     '星座',
     '体育',
     '房产',
     '娱乐',
     '时政',
     '教育']
    
    
    
    
    
    
    
    
    

    构建训练、验证、测试集

    def build_dataset(data_path, train_path, dev_path, test_path):
        data_iter = get_data_iterator(data_path)
        with open(train_path, 'w', encoding='utf-8') as train_file, \
             open(dev_path, 'w', encoding='utf-8') as dev_file, \
             open(test_path, 'w', encoding='utf-8') as test_file:
            
            for text, label in tqdm(data_iter):
                radio = random.random()
                if radio < 0.8:
                    train_file.write(text + "\t" + label + "\n")
                elif radio < 0.9:
                    dev_file.write(text + "\t" + label + "\n")
                else:
                    test_file.write(text + "\t" + label + "\n")
    
    # build_dataset(data_path, r"data/keras_bert_train.txt", r"data/keras_bert_dev.txt", r"data/keras_bert_test.txt")
    
    
    
    
    
    
    
    
    

    获取数据集样本个数

    def get_sample_num(data_path):
        count = 0
        with open(data_path, 'r', encoding='utf-8') as data_file:
            for line in tqdm(data_file):
                count += 1
        return count
    
    train_sample_count = get_sample_num(r"data/keras_bert_train.txt")
    
    668858it [00:09, 67648.27it/s]
    
    dev_sample_count = get_sample_num(r"data/keras_bert_dev.txt")
    
    83721it [00:01, 61733.96it/s]
    
    test_sample_count = get_sample_num(r"data/keras_bert_test.txt")
    
    83496it [00:01, 72322.53it/s]
    
    train_sample_count, dev_sample_count, test_sample_count
    
    (668858, 83721, 83496)
    
    
    
    
    
    
    
    
    

    构建数据迭代器

    def get_text_iterator(data_path):
        with open(data_path, 'r', encoding='utf-8') as data_file:
            for line in data_file:
                data_split = line.strip().split('\t')
                if len(data_split) != 2:
                    print(line)
                    continue
                yield data_split[0], data_split[1]
    
    it = get_text_iterator(r"data/keras_bert_train.txt")
    
    next(it)
    
    ('竞彩解析:日本美国争冠死磕 两巴相逢必有生死。周日受注赛事,女足世界杯决赛、美洲杯两场1/4决赛毫无疑问是全世界球迷和彩民关注的焦点。本届女足世界杯的最大黑马日本队能否一黑到底,创造亚洲奇迹?女子足坛霸主美国队能否再次“灭黑”成功,成就三冠伟业?巴西、巴拉圭冤家路窄,谁又能笑到最后?诸多谜底,在周一凌晨就会揭晓。日本美国争冠死磕。本届女足世界杯,是颠覆与反颠覆之争。夺冠大热门东道主德国队1/4决赛被日本队加时赛一球而“黑”,另一个夺冠大热门瑞典队则在半决赛被日本队3:1彻底打垮。而美国队则捍卫着女足豪强的尊严,在1/4决赛,她们与巴西女足苦战至点球大战,最终以5:3淘汰这支迅速崛起的黑马球队,而在半决赛,她们更是3:1大胜欧洲黑马法国队。美日两队此次世界杯进程惊人相似,小组赛前两轮全胜,最后一轮输球,1/4决赛同样与对手90分钟内战成平局,半决赛竟同样3:1大胜对手。此次决战,无论是日本还是美国队夺冠,均将创造女足世界杯新的历史。两巴相逢必有生死。本届美洲杯,让人大跌眼镜的事情太多。巴西、巴拉圭冤家路窄似乎更具传奇色彩。两队小组赛同分在B组,原本两个出线大热门,却双双在前两轮小组赛战平,两队直接交锋就是2:2平局,结果双双面临出局危险。最后一轮,巴西队在下半场终于发威,4:2大胜厄瓜多尔后来居上以小组第一出线,而巴拉圭最后一战还是3:3战平委内瑞拉获得小组第三,侥幸凭借净胜球优势挤掉A组第三名的哥斯达黎加,获得一个八强席位。在小组赛,巴西队是在最后时刻才逼平了巴拉圭,他们的好运气会在淘汰赛再显神威吗?巴拉圭此前3轮小组赛似乎都缺乏运气,此番又会否被幸运之神补偿一下呢?。另一场美洲杯1/4决赛,智利队在C组小组赛2胜1平以小组头名晋级八强;而委内瑞拉在B组是最不被看好的球队,但竟然在与巴西、巴拉圭同组的情况下,前两轮就奠定了小组出线权,他们小组3战1胜2平保持不败战绩,而入球数跟智利一样都是4球,只是失球数比智利多了1个。但既然他们面对强大的巴西都能保持球门不失,此番再创佳绩也不足为怪。',
     '彩票')
    
    token_dict = load_vocabulary(bert_paths.vocab)
    
    tokenizer = Tokenizer(token_dict)
    
    def get_keras_bert_iterator(data_path, cat_to_id, tokenizer):
        while True:
            data_iter = get_text_iterator(data_path)
            for text, category in data_iter:
                indices, segments = tokenizer.encode(first=text, max_len=text_max_length)
                yield indices, segments, cat_to_id[category]
    
    it = get_keras_bert_iterator(r"data/keras_bert_train.txt", cat_to_id, tokenizer)
    
    # next(it)
    
    
    
    
    
    
    
    
    

    构建批次数据迭代器

    def batch_iter(data_path, cat_to_id, tokenizer, batch_size=64, shuffle=True):
        """生成批次数据"""
        keras_bert_iter = get_keras_bert_iterator(data_path, cat_to_id, tokenizer)
        while True:
            data_list = []
            for _ in range(batch_size):
                data = next(keras_bert_iter)
                data_list.append(data)
            if shuffle:
                random.shuffle(data_list)
            
            indices_list = []
            segments_list = []
            label_index_list = []
            for data in data_list:
                indices, segments, label_index = data
                indices_list.append(indices)
                segments_list.append(segments)
                label_index_list.append(label_index)
    
            yield [np.array(indices_list), np.array(segments_list)], np.array(label_index_list)
    
    it = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size=1)
    
    # next(it)
    
    it = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size=2)
    
    next(it)
    
    ([array([[ 101, 4993, 2506, ...,  131,  123,  102],
             [ 101, 2506, 3696, ..., 1139,  125,  102]]),
      array([[0, 0, 0, ..., 0, 0, 0],
             [0, 0, 0, ..., 0, 0, 0]])],
     array([0, 0]))
    
    
    
    
    
    
    
    
    

    定义base模型

    def get_model(label_list):
        K.clear_session()
        
        bert_model = load_trained_model_from_checkpoint(bert_paths.config, bert_paths.checkpoint, seq_len=text_max_length)  #加载预训练模型
     
        for l in bert_model.layers:
            l.trainable = True
     
        input_indices = Input(shape=(None,))
        input_segments = Input(shape=(None,))
     
        bert_output = bert_model([input_indices, input_segments])
        bert_cls = Lambda(lambda x: x[:, 0])(bert_output) # 取出[CLS]对应的向量用来做分类
        output = Dense(len(label_list), activation='softmax')(bert_cls)
     
        model = Model([input_indices, input_segments], output)
        model.compile(loss='sparse_categorical_crossentropy',
                      optimizer=Adam(1e-5),    #用足够小的学习率
                      metrics=['accuracy'])
        print(model.summary())
        return model
    
    early_stopping = EarlyStopping(monitor='val_acc', patience=3)   #早停法,防止过拟合
    plateau = ReduceLROnPlateau(monitor="val_acc", verbose=1, mode='max', factor=0.5, patience=2) #当评价指标不在提升时,减少学习率
    checkpoint = ModelCheckpoint('trained_model/keras_bert_THUCNews.hdf5', monitor='val_acc',verbose=2, save_best_only=True, mode='max', save_weights_only=True) #保存最好的模型
    

    模型训练

    def get_step(sample_count, batch_size):
        step = sample_count // batch_size
        if sample_count % batch_size != 0:
            step += 1
        return step
    
    batch_size = 4
    train_step = get_step(train_sample_count, batch_size)
    dev_step = get_step(dev_sample_count, batch_size)
    
    train_dataset_iterator = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size)
    dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, batch_size)
    
    model = get_model(categories)
    
    #模型训练
    model.fit(
        train_dataset_iterator,
        steps_per_epoch=train_step,
        epochs=10,
        validation_data=dev_dataset_iterator,
        validation_steps=dev_step,
        callbacks=[early_stopping, plateau, checkpoint],
        verbose=1
    )
    
    Model: "functional_5"
    __________________________________________________________________________________________________
    Layer (type)                    Output Shape         Param #     Connected to                     
    ==================================================================================================
    input_1 (InputLayer)            [(None, 512)]        0                                            
    __________________________________________________________________________________________________
    input_2 (InputLayer)            [(None, 512)]        0                                            
    __________________________________________________________________________________________________
    functional_3 (Functional)       (None, 512, 768)     101677056   input_1[0][0]                    
                                                                     input_2[0][0]                    
    __________________________________________________________________________________________________
    lambda (Lambda)                 (None, 768)          0           functional_3[0][0]               
    __________________________________________________________________________________________________
    dense (Dense)                   (None, 14)           10766       lambda[0][0]                     
    ==================================================================================================
    Total params: 101,687,822
    Trainable params: 101,687,822
    Non-trainable params: 0
    __________________________________________________________________________________________________
    None
    Epoch 1/10
         5/167215 [..............................] - ETA: 775:02:36 - loss: 0.4064 - accuracy: 0.9000
    
    
    ---------------------------------------------------------------------------
    
    
    
    
    
    
    
    
    

    多输出模型

    构建数据迭代器

    second_label_list = [0, 1, 2]
    
    def get_keras_bert_iterator(data_path, cat_to_id, tokenizer, second_label_list):
        while True:
            data_iter = get_text_iterator(data_path)
            for text, category in data_iter:
                indices, segments = tokenizer.encode(first=text, max_len=text_max_length)
                yield indices, segments, cat_to_id[category], random.choice(second_label_list)
    
    it = get_keras_bert_iterator(r"data/keras_bert_train.txt", cat_to_id, tokenizer, second_label_list)
    
    # next(it)
    
    def batch_iter(data_path, cat_to_id, tokenizer, second_label_list, batch_size=64, shuffle=True):
        """生成批次数据"""
        keras_bert_iter = get_keras_bert_iterator(data_path, cat_to_id, tokenizer, second_label_list)
        while True:
            data_list = []
            for _ in range(batch_size):
                data = next(keras_bert_iter)
                data_list.append(data)
            if shuffle:
                random.shuffle(data_list)
            
            indices_list = []
            segments_list = []
            label_index_list = []
            second_label_list = []
            for data in data_list:
                indices, segments, label_index, second_label = data
                indices_list.append(indices)
                segments_list.append(segments)
                label_index_list.append(label_index)
                second_label_list.append(second_label)
    
            yield [np.array(indices_list), np.array(segments_list)], [np.array(label_index_list), np.array(second_label_list)]
    
    it = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, second_label_list, batch_size=2)
    
    next(it)
    
    ([array([[ 101, 4993, 2506, ...,  131,  123,  102],
             [ 101, 2506, 3696, ..., 1139,  125,  102]]),
      array([[0, 0, 0, ..., 0, 0, 0],
             [0, 0, 0, ..., 0, 0, 0]])],
     [array([0, 0]), array([0, 0])])
    

    定义模型

    def get_model(label_list, second_label_list):
        K.clear_session()
        
        bert_model = load_trained_model_from_checkpoint(bert_paths.config, bert_paths.checkpoint, seq_len=text_max_length)  #加载预训练模型
     
        for l in bert_model.layers:
            l.trainable = True
     
        input_indices = Input(shape=(None,))
        input_segments = Input(shape=(None,))
     
        bert_output = bert_model([input_indices, input_segments])
        bert_cls = Lambda(lambda x: x[:, 0])(bert_output) # 取出[CLS]对应的向量用来做分类
        output = Dense(len(label_list), activation='softmax')(bert_cls)
        output_second = Dense(len(second_label_list), activation='softmax')(bert_cls)
     
        model = Model([input_indices, input_segments], [output, output_second])
        model.compile(loss='sparse_categorical_crossentropy',
                      optimizer=Adam(1e-5),    #用足够小的学习率
                      metrics=['accuracy'])
        print(model.summary())
        return model
    
    early_stopping = EarlyStopping(monitor='val_acc', patience=3)   #早停法,防止过拟合
    plateau = ReduceLROnPlateau(monitor="val_acc", verbose=1, mode='max', factor=0.5, patience=2) #当评价指标不在提升时,减少学习率
    checkpoint = ModelCheckpoint('trained_model/muilt_keras_bert_THUCNews.hdf5', monitor='val_acc',verbose=2, save_best_only=True, mode='max', save_weights_only=True) #保存最好的模型
    

    模型训练

    batch_size = 4
    train_step = get_step(train_sample_count, batch_size)
    dev_step = get_step(dev_sample_count, batch_size)
    
    train_dataset_iterator = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, second_label_list, batch_size)
    dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, second_label_list, batch_size)
    
    model = get_model(categories, second_label_list)
    
    #模型训练
    model.fit(
        train_dataset_iterator,
        steps_per_epoch=train_step,
        epochs=10,
        validation_data=dev_dataset_iterator,
        validation_steps=dev_step,
        callbacks=[early_stopping, plateau, checkpoint],
        verbose=1
    )
    
    Model: "functional_5"
    __________________________________________________________________________________________________
    Layer (type)                    Output Shape         Param #     Connected to                     
    ==================================================================================================
    input_1 (InputLayer)            [(None, 512)]        0                                            
    __________________________________________________________________________________________________
    input_2 (InputLayer)            [(None, 512)]        0                                            
    __________________________________________________________________________________________________
    functional_3 (Functional)       (None, 512, 768)     101677056   input_1[0][0]                    
                                                                     input_2[0][0]                    
    __________________________________________________________________________________________________
    lambda (Lambda)                 (None, 768)          0           functional_3[0][0]               
    __________________________________________________________________________________________________
    dense (Dense)                   (None, 14)           10766       lambda[0][0]                     
    __________________________________________________________________________________________________
    dense_1 (Dense)                 (None, 3)            2307        lambda[0][0]                     
    ==================================================================================================
    Total params: 101,690,129
    Trainable params: 101,690,129
    Non-trainable params: 0
    __________________________________________________________________________________________________
    None
    Epoch 1/10
         7/167215 [..............................] - ETA: 1829:52:33 - loss: 3.1260 - dense_loss: 1.4949 - dense_1_loss: 1.6311 - dense_accuracy: 0.6429 - dense_1_accuracy: 0.3571 
    
    
    
    file

    相关文章

      网友评论

          本文标题:用keras_bert实现多输出、参数共享模型

          本文链接:https://www.haomeiwen.com/subject/yokocltx.html