美文网首页
MT19937 随机算法实现

MT19937 随机算法实现

作者: hemiao3000 | 来源:发表于2022-03-16 07:13 被阅读0次

Mersenne Twister 算法译为马特赛特旋转演算法,是伪随机数发生器之一,其主要作用是生成伪随机数。此算法是 Makoto Matsumoto(松本)和 Takuji Nishimura(西村)于 1997 年开发的,基于有限二进制字段上的矩阵线性再生。可以快速产生高质量的伪随机数,修正了古老随机数产生算法的很多缺陷。

Mersenne Twister 这个名字来自周期长度通常取 Mersenne 质数这样一个事实。常见的有两个变种 Mersenne Twister MT19937 和 Mersenne Twister MT19937-64 。

Mersenne Twister 有以下优点:随机性好,在计算机上容易实现,占用内存较少(mt19937 的 C 程式码执行仅需 624 个字的工作区域),与其它已使用的伪随机数发生器相比,产生随机数的速度快、周期长,可达到 2^{19937} - 1,且具有 623 维均匀分布的性质,对于一般的应用来说,足够大了,序列关联比较小,能通过很多随机性测试。

import java.util.HashMap;
import java.util.Map;
import java.util.Random;

/**
 * MT19937 的 Java 实现。用于高效生成伪随机数。
 */
public class MTRandom extends Random {

    // Constants used in the original C implementation
    private final static int UPPER_MASK = 0x80000000;
    private final static int LOWER_MASK = 0x7fffffff;

    private final static int N = 624;
    private final static int M = 397;
    private final static int MAGIC[] = {0x0, 0x9908b0df};
    private final static int MAGIC_FACTOR1 = 1812433253;
    private final static int MAGIC_FACTOR2 = 1664525;
    private final static int MAGIC_FACTOR3 = 1566083941;
    private final static int MAGIC_MASK1 = 0x9d2c5680;
    private final static int MAGIC_MASK2 = 0xefc60000;
    private final static int MAGIC_SEED = 19650218;
    private final static long DEFAULT_SEED = 5489L;

    // Internal state
    private transient int[] mt;
    private transient int mti;
    private transient boolean compat = false;

    // Temporary buffer used during setSeed(long)
    private transient int[] ibuf;

    /**
     * The default constructor for an instance of MTRandom.  This invokes
     * the no-argument constructor for java.util.Random which will result
     * in the class being initialised with a seed value obtained by calling
     * System.currentTimeMillis().
     */
    public MTRandom() {
    }

    /**
     * This version of the constructor can be used to implement identical
     * behaviour to the original C code version of this algorithm including
     * exactly replicating the case where the seed value had not been set
     * prior to calling genrand_int32.
     * <p>
     * If the compatibility flag is set to true, then the algorithm will be
     * seeded with the same default value as was used in the original C
     * code.  Furthermore the setSeed() method, which must take a 64 bit
     * long value, will be limited to using only the lower 32 bits of the
     * seed to facilitate seamless migration of existing C code into Java
     * where identical behaviour is required.
     * <p>
     * Whilst useful for ensuring backwards compatibility, it is advised
     * that this feature not be used unless specifically required, due to
     * the reduction in strength of the seed value.
     *
     * @param compatible Compatibility flag for replicating original
     *                   behaviour.
     */
    public MTRandom(boolean compatible) {
        super(0L);
        compat = compatible;
        setSeed(compat ? DEFAULT_SEED : System.currentTimeMillis());
    }

    /**
     * This version of the constructor simply initialises the class with
     * the given 64 bit seed value.  For a better random number sequence
     * this seed value should contain as much entropy as possible.
     *
     * @param seed The seed value with which to initialise this class.
     */
    public MTRandom(long seed) {
        super(seed);
    }

    /**
     * This version of the constructor initialises the class with the
     * given byte array.  All the data will be used to initialise this
     * instance.
     *
     * @param buf The non-empty byte array of seed information.
     * @throws NullPointerException     if the buffer is null.
     * @throws IllegalArgumentException if the buffer has zero length.
     */
    public MTRandom(byte[] buf) {
        super(0L);
        setSeed(buf);
    }

    /**
     * This version of the constructor initialises the class with the
     * given integer array.  All the data will be used to initialise
     * this instance.
     *
     * @param buf The non-empty integer array of seed information.
     * @throws NullPointerException     if the buffer is null.
     * @throws IllegalArgumentException if the buffer has zero length.
     */
    public MTRandom(int[] buf) {
        super(0L);
        setSeed(buf);
    }

    // Initializes mt[N] with a simple integer seed. This method is
    // required as part of the Mersenne Twister algorithm but need
    // not be made public.
    private final void setSeed(int seed) {

        // Annoying runtime check for initialisation of internal data
        // caused by java.util.Random invoking setSeed() during init.
        // This is unavoidable because no fields in our instance will
        // have been initialised at this point, not even if the code
        // were placed at the declaration of the member variable.
        if (mt == null) mt = new int[N];

        // ---- Begin Mersenne Twister Algorithm ----
        mt[0] = seed;
        for (mti = 1; mti < N; mti++) {
            mt[mti] = (MAGIC_FACTOR1 * (mt[mti - 1] ^ (mt[mti - 1] >>> 30)) + mti);
        }
        // ---- End Mersenne Twister Algorithm ----
    }

    /**
     * This method resets the state of this instance using the 64
     * bits of seed data provided.  Note that if the same seed data
     * is passed to two different instances of MTRandom (both of
     * which share the same compatibility state) then the sequence
     * of numbers generated by both instances will be identical.
     * <p>
     * If this instance was initialised in 'compatibility' mode then
     * this method will only use the lower 32 bits of any seed value
     * passed in and will match the behaviour of the original C code
     * exactly with respect to state initialisation.
     *
     * @param seed The 64 bit value used to initialise the random
     *             number generator state.
     */
    public final synchronized void setSeed(long seed) {
        if (compat) {
            setSeed((int) seed);
        } else {

            // Annoying runtime check for initialisation of internal data
            // caused by java.util.Random invoking setSeed() during init.
            // This is unavoidable because no fields in our instance will
            // have been initialised at this point, not even if the code
            // were placed at the declaration of the member variable.
            if (ibuf == null) ibuf = new int[2];

            ibuf[0] = (int) seed;
            ibuf[1] = (int) (seed >>> 32);
            setSeed(ibuf);
        }
    }

    /**
     * This method resets the state of this instance using the byte
     * array of seed data provided.  Note that calling this method
     * is equivalent to calling "setSeed(pack(buf))" and in particular
     * will result in a new integer array being generated during the
     * call.  If you wish to retain this seed data to allow the pseudo
     * random sequence to be restarted then it would be more efficient
     * to use the "pack()" method to convert it into an integer array
     * first and then use that to re-seed the instance.  The behaviour
     * of the class will be the same in both cases but it will be more
     * efficient.
     *
     * @param buf The non-empty byte array of seed information.
     * @throws NullPointerException     if the buffer is null.
     * @throws IllegalArgumentException if the buffer has zero length.
     */
    public final void setSeed(byte[] buf) {
        setSeed(pack(buf));
    }

    /**
     * This method resets the state of this instance using the integer
     * array of seed data provided.  This is the canonical way of
     * resetting the pseudo random number sequence.
     *
     * @param buf The non-empty integer array of seed information.
     * @throws NullPointerException     if the buffer is null.
     * @throws IllegalArgumentException if the buffer has zero length.
     */
    public final synchronized void setSeed(int[] buf) {
        int length = buf.length;
        if (length == 0) throw new IllegalArgumentException("Seed buffer may not be empty");
        // ---- Begin Mersenne Twister Algorithm ----
        int i = 1, j = 0, k = (N > length ? N : length);
        setSeed(MAGIC_SEED);
        for (; k > 0; k--) {
            mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >>> 30)) * MAGIC_FACTOR2)) + buf[j] + j;
            i++;
            j++;
            if (i >= N) {
                mt[0] = mt[N - 1];
                i = 1;
            }
            if (j >= length) j = 0;
        }
        for (k = N - 1; k > 0; k--) {
            mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >>> 30)) * MAGIC_FACTOR3)) - i;
            i++;
            if (i >= N) {
                mt[0] = mt[N - 1];
                i = 1;
            }
        }
        mt[0] = UPPER_MASK; // MSB is 1; assuring non-zero initial array
        // ---- End Mersenne Twister Algorithm ----
    }

    /**
     * This method forms the basis for generating a pseudo random number
     * sequence from this class.  If given a value of 32, this method
     * behaves identically to the genrand_int32 function in the original
     * C code and ensures that using the standard nextInt() function
     * (inherited from Random) we are able to replicate behaviour exactly.
     * <p>
     * Note that where the number of bits requested is not equal to 32
     * then bits will simply be masked out from the top of the returned
     * integer value.  That is to say that:
     * <pre>
     * mt.setSeed(12345);
     * int foo = mt.nextInt(16) + (mt.nextInt(16) << 16);</pre>
     * will not give the same result as
     * <pre>
     * mt.setSeed(12345);
     * int foo = mt.nextInt(32);</pre>
     *
     * @param bits The number of significant bits desired in the output.
     * @return The next value in the pseudo random sequence with the
     * specified number of bits in the lower part of the integer.
     */
    protected final synchronized int next(int bits) {
        // ---- Begin Mersenne Twister Algorithm ----
        int y, kk;
        if (mti >= N) {             // generate N words at one time

            // In the original C implementation, mti is checked here
            // to determine if initialisation has occurred; if not
            // it initialises this instance with DEFAULT_SEED (5489).
            // This is no longer necessary as initialisation of the
            // Java instance must result in initialisation occurring
            // Use the constructor MTRandom(true) to enable backwards
            // compatible behaviour.

            for (kk = 0; kk < N - M; kk++) {
                y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
                mt[kk] = mt[kk + M] ^ (y >>> 1) ^ MAGIC[y & 0x1];
            }
            for (; kk < N - 1; kk++) {
                y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
                mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ MAGIC[y & 0x1];
            }
            y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
            mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ MAGIC[y & 0x1];

            mti = 0;
        }

        y = mt[mti++];

        // Tempering
        y ^= (y >>> 11);
        y ^= (y << 7) & MAGIC_MASK1;
        y ^= (y << 15) & MAGIC_MASK2;
        y ^= (y >>> 18);
        // ---- End Mersenne Twister Algorithm ----
        return (y >>> (32 - bits));
    }

    // This is a fairly obscure little code section to pack a
    // byte[] into an int[] in little endian ordering.

    /**
     * This simply utility method can be used in cases where a byte
     * array of seed data is to be used to repeatedly re-seed the
     * random number sequence.  By packing the byte array into an
     * integer array first, using this method, and then invoking
     * setSeed() with that; it removes the need to re-pack the byte
     * array each time setSeed() is called.
     * <p>
     * If the length of the byte array is not a multiple of 4 then
     * it is implicitly padded with zeros as necessary.  For example:
     * <pre>    byte[] { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }</pre>
     * becomes
     * <pre>    int[]  { 0x04030201, 0x00000605 }</pre>
     * <p>
     * Note that this method will not complain if the given byte array
     * is empty and will produce an empty integer array, but the
     * setSeed() method will throw an exception if the empty integer
     * array is passed to it.
     *
     * @param buf The non-null byte array to be packed.
     * @return A non-null integer array of the packed bytes.
     * @throws NullPointerException if the given byte array is null.
     */
    public static int[] pack(byte[] buf) {
        int k, blen = buf.length, ilen = ((buf.length + 3) >>> 2);
        int[] ibuf = new int[ilen];
        for (int n = 0; n < ilen; n++) {
            int m = (n + 1) << 2;
            if (m > blen) m = blen;
            for (k = buf[--m] & 0xff; (m & 0x3) != 0; k = (k << 8) | buf[--m] & 0xff)
                ;
            ibuf[n] = k;
        }
        return ibuf;
    }

    /**
     * 使用/验证代码
     */
    public static void main(String[] args) {
        // MT19937 随机算法的 Java 实现
        MTRandom mtRandom = new MTRandom();
        Map<Integer, Integer> map = new HashMap<>();
        // 循环次数
        int times = 1000000;
        long startTime = System.currentTimeMillis();
        for (int i = 0; i < times; i++) {
            // 使用 Map 去重
            map.put(mtRandom.next(32), 0);
        }
        // 打印循环次数
        System.out.println("times:" + times);
        // 打印 Map 的个数
        System.out.println("num:" + map.size());
        // 打印非重复比率
        System.out.println("proportion:" + map.size() / (double) times);
        // 花费的时间(单位为毫秒)
        System.out.println("time:" + (System.currentTimeMillis() - startTime));
    }
}

相关文章

  • MT19937 随机算法实现

    Mersenne Twister 算法译为马特赛特旋转演算法,是伪随机数发生器之一,其主要作用是生成伪随机数。此算...

  • C++ STL mt19937 使用说明

    说明 std::mt19937是伪随机数产生器,用于产生高性能的随机数。 C++11引入。返回值为unsigned...

  • 洗牌算法

    音乐软件中的随机播放算法是怎样实现的? 洗牌算法(Shuffle) 生成一个随机数(Random) 这里给出洗牌算...

  • 14.dubbo源码-负载均衡

    LoadBalance 从LoadBalance的实现类可知,dubbo默认的负载均衡算法总计有4种: 随机算法R...

  • 打车链分析

    出块算法 出块算法结合了 PoS, VRF, PBFT,以此实现随机选择创建新的块的节点。PoS 算法可以降低维护...

  • 利用crf++进行实体识别

    1. 前言 crf++是条件随机场(CRF)算法实现的开源工具,因底层是c++语言来实现,算法复现的综合性能很高,...

  • 支持向量机(SVM)的SMO算法实现

    svmMLiA.py,为没有用启发式算法,随机选择alphas[i],alphas[j]的SMO算法的实现。svm...

  • 协同过滤

    协同过滤算法有多个方法实现,基于邻域算法、隐语义模型、基于图的随机游走等基于邻域算法公认效果较好的算法,分以下2类...

  • python实现随机森林算法

    用决策树实现一个根据用户的信息判断用户是否逾期的分类算法代码实现。 首先,我们对数据进行预处理,填充缺失值,数据集...

  • java 权重随机算法实现

网友评论

      本文标题:MT19937 随机算法实现

      本文链接:https://www.haomeiwen.com/subject/yowudrtx.html