为了了解跟python数据分析有关行业的信息,大概地了解一下对这个行业的要求以及薪资状况,我决定从网上获取信息并进行分析。既然想要分析就必须要有数据,于是我选择了拉勾,冒着危险深入内部,从他们那里得到了信息。不得不说,拉勾的反爬技术还挺厉害的,稍后再说明。话不多说,直接开始。
一、明确目的
每次爬虫都要有明确的目的,刚接触随便找东西试水的除外。我想要知道的是python数据分析的要求以及薪资状况,因此,薪资、学历、工作经验以及一些任职要求就是我的目的。
既然明确了目的,我们就要看一下它们在什么位置,所以我们打开浏览器,寻找目标。像拉勾这种网站他们的信息一般都是通过ajax加载的,而且在输入“python数据分析”敲击回车之后跳转的页面,招聘信息不是一开始就显示出来的,通过点击页码也只是招聘信息在变化甚至连network都没多大变化,可以大胆猜测他是通过post请求的,所以我们只关注post请求以及XHR文件,很快就发现了我们要的东西。

点击preview可见详细信息以json形式保存着,其中‘salary’、‘workYear’、‘education’、‘positionID’(招聘信息详情页有关的id)是我们要的。再观察一下它的form data,其中kd=关键字,pn=pageNum(页码)这是我们请求的时候要带上的参数。另外我们要注意请求头的referer参数,待会儿要用。知道了目标之后,爬起来!
二、开始爬虫
先设置请求头headers,把平时用的user-agent带上,再把formdata也带上,用requests库直接requests.post(url, headers=headers, data=formdata),然后就开始报错了:{"status":false,"msg":"您操作太频繁,请稍后再访问","clientIp":"......","state":2402}。
解决这个问题的关键在于,了解拉勾的反爬机制:在进入python数据分析招聘页之前,我们要在主页,不妨叫它start_url输入关键字跳转。在这个过程中,服务器会传回来一个cookies,如果带着这个cookies请求的话我们就可以得到要的东西,所以要先请求start_url获取cookies在请求目标url,而且在请求目标地址的话还要带上referer这个请求头参数,referer的含义大概是这样:告诉服务器我是从哪个页面链接过来的,服务器基此可以获得一些信息用于处理。另外,睡眠时间也要设置的长一点,不然很容易被封。知道了反爬机制之后,话不多说,直接上代码。

其中save_data(items)是保存文件,我是保存在csv文件。篇幅有限,这里就不展示了。
三、获取招聘详情
上面说了positionID 是为了获取详情页,详情页里面有要的任职要求。这个要获取就相对容易了,不过文本的处理并没有很简单,我只能通过“要求”这两个字获取任职要求(虽然有的为任职技能啥的,就这样进行取舍了)。

四、成果与展示

网友评论