JVM性能调优

作者: VIPSHOP_FCS | 来源:发表于2017-11-19 21:56 被阅读0次

    最近工作中,老是遇到程序假死或者宕掉,最终原因都是full gc导致,刚好回过头再学习一下JVM内存模式,以及GC垃圾回收机制,减少故障几率。

    一、JVM内存模型及垃圾收集算法

    1. JVM内存划分:

    • New(年轻代)

    • Tenured(年老代)

    • Prtm(永久代)

    其中New和Tenured属于堆内存,堆内存会从JVM启动参数(-Xmx:2G)指定的内存中分配,Perm不属于堆内存,有虚拟机直接分配,但可以通过-XX:PermSize -XX:MaxPermSize 等参数调整其大小。

    • 年轻代(New):年轻代用来存放JVM刚分配的Java对象

    • 年老代(Tenured):年轻代中经过垃圾回收没有回收掉的对象将被Copy到年老代

    • 永久代(Perm):永久代存放Class、Method元信息,其大小跟项目的规模、类、方法的量有关,一般设置为128M就足够,设置原则是预留30%的空间。

    HotSpot JVM把年轻代分为了三部分:

    • Eden:存放JVM刚分配的对象

    • Survivor1

    • Survivro2:两个Survivor空间一样大

    新创建的对象都会被分配到Eden区当,经过第一次Minor GC后,如果仍然存活,将会被移到Survivor区。对象在Survivor区中每熬过一次Minor GC,年龄就会增加1岁,当它的年龄增加到一定程度时,就会被移动到年老代中。

    因为年轻代中的对象基本都是朝生夕死的(80%以上),所以在年轻代的垃圾回收算法使用的是复制算法,复制算法的基本思想就是将内存分为两块,每次只用其中一块,当这一块内存用完,就将还活着的对象复制到另外一块上面。复制算法不会产生内存碎片。

    在GC开始的时候,对象只会存在于Eden区和名为“From”的Survivor区,Survivor区“To”是空的。紧接着进行GC,Eden区中所有存活的对象都会被复制到“To”,而在“From”区中,仍存活的对象会根据他们的年龄值来决定去向。年龄达到一定值(年龄阈值,可以通过-XX:MaxTenuringThreshold来设置)的对象会被移动到年老代中,没有达到阈值的对象会被复制到“To”区域。经过这次GC后,Eden区和From区已经被清空。这个时候,“From”和“To”会交换他们的角色,也就是新的“To”就是上次GC前的“From”,新的“From”就是上次GC前的“To”。不管怎样,都会保证名为To的Survivor区域是空的。Minor GC会一直重复这样的过程,直到“To”区被填满,“To”区被填满之后,会将所有对象移动到年老代中。


    young_gc.png

    2. 典型垃圾回收算法:

    1.Mark-Sweep(标记-清除典型垃圾)算法

    最基础的垃圾回收算法,容易实现,思想简单。标记-清除算法分为两个阶段:标记阶段和清除阶段。标记阶段的任务是标记出所有需要被回收的对象,清除阶段就是回收被标记的对象所占用的空间。具体过程如下图所示:

    image

    从图中可以很容易看出标记-清除算法实现起来比较容易,但是有一个比较严重的问题就是容易产生内存碎片,碎片太多可能会导致后续过程中需要为大对象分配空间时无法找到足够的空间而提前触发新的一次垃圾收集动作。

    2.Copying(复制)算法

    为了解决Mark-Sweep算法的缺陷,Copying算法就被提了出来。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用的内存空间一次清理掉,这样一来就不容易出现内存碎片的问题。具体过程如下图所示:

    image

    这种算法虽然实现简单,运行高效且不容易产生内存碎片,但是却对内存空间的使用做出了高昂的代价,因为能够使用的内存缩减到原来的一半。

    很显然,Copying算法的效率跟存活对象的数目多少有很大的关系,如果存活对象很多,那么Copying算法的效率将会大大降低。

    3.Mark-Compact(标记-整理)算法

    为了解决Copying算法的缺陷,充分利用内存空间,提出了Mark-Compact算法。该算法标记阶段和Mark-Sweep一样,但是在完成标记之后,它不是直接清理可回收对象,而是将存活对象都向一端移动,然后清理掉端边界以外的内存。具体过程如下图所示:

    image

    4.Generational Collection(分代收集)算法

    分代收集算法是目前大部分JVM的垃圾收集器采用的算法。它的核心思想是根据对象存活的生命周期将内存划分为若干个不同的区域。一般情况下将堆区划分为老年代(Tenured Generation)和新生代(Young Generation),老年代的特点是每次垃圾收集时只有少量对象需要被回收,而新生代的特点是每次垃圾回收时都有大量的对象需要被回收,那么就可以根据不同代的特点采取最适合的收集算法。

    目前大部分垃圾收集器对于新生代都采取Copying算法,因为新生代中每次垃圾回收都要回收大部分对象,也就是说需要复制的操作次数较少,但是实际中并不是按照1:1的比例来划分新生代的空间的,一般来说是将新生代划分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden空间和其中的一块Survivor空间,当进行回收时,将Eden和Survivor中还存活的对象复制到另一块Survivor空间中,然后清理掉Eden和刚才使用过的Survivor空间。

    而由于老年代的特点是每次回收都只回收少量对象,一般使用的是Mark-Compact算法。

    注意,在堆区之外还有一个代就是永久代(Permanet Generation),它用来存储class类、常量、方法描述等。对永久代的回收主要回收两部分内容:废弃常量和无用的类。

    3. 典型垃圾回收器:
    下面介绍一下HotSpot(JDK 7)虚拟机提供的几种垃圾收集器,可根据实际需求组合出各个年代使用的收集器。

    1.Serial/Serial Old

    Serial/Serial Old收集器是最基本最古老的收集器,它是一个单线程收集器,并且在它进行垃圾收集时,必须暂停所有用户线程。Serial收集器是针对新生代的收集器,采用的是Copying算法,Serial Old收集器是针对老年代的收集器,采用的是Mark-Compact算法。它的优点是实现简单高效,但是缺点是会给用户带来停顿。

    2.ParNew

    ParNew收集器是Serial收集器的多线程版本,使用多个线程进行垃圾收集。

    3.Parallel Scavenge

    Parallel Scavenge收集器是一个新生代的多线程收集器(并行收集器),它在回收期间不需要暂停其他用户线程,其采用的是Copying算法,该收集器与前两个收集器有所不同,它主要是为了达到一个可控的吞吐量。

    4.Parallel Old

    Parallel Old是Parallel Scavenge收集器的老年代版本(并行收集器),使用多线程和Mark-Compact算法。

    5.CMS

    CMS(Current Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,它是一种并发收集器,采用的是Mark-Sweep算法。

    6.G1

    G1收集器是当今收集器技术发展最前沿的成果,它是一款面向服务端应用的收集器,它能充分利用多CPU、多核环境。因此它是一款并行与并发收集器,并且它能建立可预测的停顿时间模型。

    参考资料:

    《深入理解Java虚拟机》

    问题:
    1、垃圾回收何时执行?

    • 当年轻代内存满时,会引发一次普通GC,该GC仅回收年轻代。需要强调的时,年轻代满是指Eden代满,Survivor满不会引发GC

    • 当年老代满时会引发Full GC,Full GC将会同时回收年轻代、年老代

    • 当永久代满时也会引发Full GC,会导致Class、Method元信息的卸载

    2、何时会抛出OutOfMemoryException?

    • JVM98%的时间都花费在内存回收

    • 每次回收的内存小于2%

    满足这两个条件将触发OutOfMemoryException,这将会留给系统一个微小的间隙以做一些Down之前的操作,比如手动打印Heap Dump。

    二、内存泄漏及解决方法

    1.系统崩溃前的一些现象:

    • 每次垃圾回收的时间越来越长,由之前的10ms延长到50ms左右,FullGC的时间也有之前的0.5s延长到4、5s

    • FullGC的次数越来越多,最频繁时隔不到1分钟就进行一次FullGC

    • 年老代的内存越来越大并且每次FullGC后年老代没有内存被释放

    之后系统会无法响应新的请求,逐渐到达OutOfMemoryError的临界值。

    2.解决方式:

    • 生成堆的dump文件

    通过JMX的MBean生成当前的Heap信息,大小为一个3G(整个堆的大小)的hprof文件,如果没有启动JMX可以通过Java的jmap命令来生成该文件。

    • 分析dump文件
      可借助一下工具分析dump文件
      JDK:jvisualvm
      Eclipse:Mat。

    • 分析内存泄漏

    通过工具看到,哪些对象被怀疑为内存泄漏,哪些对象占的空间最大及对象的调用关系。还可以分析线程状态,可以观察到线程被阻塞在哪个对象上,从而判断系统的瓶颈。

    3.回归问题

    Q:

    为什么崩溃前垃圾回收的时间越来越长?

    A:

    根据内存模型和垃圾回收算法,垃圾回收分两部分:内存标记、清除(复制),标记部分只要内存大小固定时间是不变的,变的是复制部分,因为每次垃圾回收都有一些回收不掉的内存,所以增加了复制量,导致时间延长。所以,垃圾回收的时间也可以作为判断内存泄漏的依据

    Q:

    为什么Full GC的次数越来越多?

    A:

    因此内存的积累,逐渐耗尽了年老代的内存,导致新对象分配没有更多的空间,从而导致频繁的垃圾回收

    Q:

    为什么年老代占用的内存越来越大?

    A:

    因为年轻代的内存无法被回收,越来越多地被Copy到年老代

    三、性能调优

    除了上述内存泄漏外,我们还发现CPU长期不足3%,系统吞吐量不够,针对8core×16G、64bit的Linux服务器来说,是严重的资源浪费。

    在CPU负载不足的同时,偶尔会有用户反映请求的时间过长,我们意识到必须对程序及JVM进行调优。从以下几个方面进行:

    • 线程池:解决用户响应时间长的问题

    • 连接池

    • JVM启动参数:调整各代的内存比例和垃圾回收算法,提高吞吐量

    • 程序算法:改进程序逻辑算法提高性能

    1.Java线程池(java.util.concurrent.ThreadPoolExecutor)

    大多数JVM6上的应用采用的线程池都是JDK自带的线程池,之所以把成熟的Java线程池进行罗嗦说明,是因为该线程池的行为与我们想象的有点出入。Java线程池有几个重要的配置参数:

    • corePoolSize:核心线程数(最新线程数)

    • maximumPoolSize:最大线程数,超过这个数量的任务会被拒绝,用户可以通过RejectedExecutionHandler接口自定义处理方式

    • keepAliveTime:线程保持活动的时间

    • workQueue:工作队列,存放执行的任务

      Java线程池需要传入一个Queue参数(workQueue)用来存放执行的任务,而对Queue的不同选择,线程池有完全不同的行为:

    • SynchronousQueue:一个无容量的等待队列,一个线程的insert操作必须等待另一线程的remove操作,采用这个Queue线程池将会为每个任务分配一个新线程`

    • LinkedBlockingQueue:无界队列,采用该Queue,线程池将忽略maximumPoolSize参数,仅用corePoolSize的线程处理所有的任务,未处理的任务便在LinkedBlockingQueue中排队

    • ArrayBlockingQueue: 有界队列,在有界队列和` maximumPoolSize的作用下,程序将很难被调优:更大的Queue和小的maximumPoolSize将导致CPU的低负载;小的Queue和大的池,Queue就没起动应有的作用。

      其实我们的要求很简单,希望线程池能跟连接池一样,能设置最小线程数、最大线程数,当最小数<任务<最大数时,应该分配新的线程处理;当任务>最大数时,应该等待有空闲线程再处理该任务。

      但线程池的设计思路是,任务应该放到Queue中,当Queue放不下时再考虑用新线程处理,如果Queue满且无法派生新线程,就拒绝该任务。设计导致“先放等执行”、“放不下再执行”、“拒绝不等待”。所以,根据不同的Queue参数,要提高吞吐量不能一味地增大maximumPoolSize。

      当然,要达到我们的目标,必须对线程池进行一定的封装,幸运的是ThreadPoolExecutor中留了足够的自定义接口以帮助我们达到目标。我们封装的方式是:

    • 以SynchronousQueue作为参数,使maximumPoolSize发挥作用,以防止线程被无限制的分配,同时可以通过提高maximumPoolSize来提高系统吞吐量

    • 自定义一个RejectedExecutionHandler,当线程数超过maximumPoolSize时进行处理,处理方式为隔一段时间检查线程池是否可以执行新Task,如果可以把拒绝的Task重新放入到线程池,检查的时间依赖keepAliveTime的大小。

    2.连接池(org.apache.commons.dbcp.BasicDataSource)

    在使用org.apache.commons.dbcp.BasicDataSource的时候,因为之前采用了默认配置,所以当访问量大时,通过JMX观察到很多Tomcat线程都阻塞在BasicDataSource使用的Apache ObjectPool的锁上,直接原因当时是因为BasicDataSource连接池的最大连接数设置的太小,默认的BasicDataSource配置,仅使用8个最大连接。

    当较长的时间不访问系统,比如2天,DB上的Mysql会断掉所以的连接,导致连接池中缓存的连接不能用。为了解决这些问题,我们充分研究了BasicDataSource,发现了一些优化的点:

    • Mysql默认支持100个链接,所以每个连接池的配置要根据集群中的机器数进行,如有2台服务器,可每个设置为60

    • initialSize:参数是一直打开的连接数

    • minEvictableIdleTimeMillis:该参数设置每个连接的空闲时间,超过这个时间连接将被关闭

    • timeBetweenEvictionRunsMillis:后台线程的运行周期,用来检测过期连接

    • maxActive:最大能分配的连接数

    • maxIdle:最大空闲数,当连接使用完毕后发现连接数大于maxIdle,连接将被直接关闭。只有initialSize < x < maxIdle的连接将被定期检测是否超期。这个参数主要用来在峰值访问时提高吞吐量。

    • initialSize是如何保持的?经过研究代码发现,BasicDataSource会关闭所有超期的连接,然后再打开initialSize数量的连接,这个特性与minEvictableIdleTimeMillis、timeBetweenEvictionRunsMillis一起保证了所有超期的initialSize连接都会被重新连接,从而避免了Mysql长时间无动作会断掉连接的问题。

    3.JVM参数

    在JVM启动参数中,可以设置跟内存、垃圾回收相关的一些参数设置,默认情况不做任何设置JVM会工作的很好,但对一些配置很好的Server和具体的应用必须仔细调优才能获得最佳性能。通过设置我们希望达到一些目标:

    • GC的时间足够的小

    • GC的次数足够的少

    • 发生Full GC的周期足够的长

    前两个目前是相悖的,要想GC时间小必须要一个更小的堆,要保证GC次数足够少,必须保证一个更大的堆,我们只能取其平衡。

    (1)针对JVM堆的设置,一般可以通过-Xms -Xmx限定其最小、最大值,

    为了防止垃圾收集器在最小、最大之间收缩堆而产生额外的时间,我们通常把最大、最小设置为相同的值

    (2)年轻代和年老代将根据默认的比例(1:2)分配堆内存,可以通过调整二者之间的比率NewRadio来调整二者之间的大小,也可以针对回收代,比如年轻代,通过 -XX:newSize -XX:MaxNewSize来设置其绝对大小。同样,为了防止年轻代的堆收缩,我们通常会把-XX:newSize -XX:MaxNewSize设置为同样大小

    (3)年轻代和年老代设置多大才算合理?这个我问题毫无疑问是没有答案的,否则也就不会有调优。我们观察一下二者大小变化有哪些影响

    • 更大的年轻代必然导致更小的年老代,大的年轻代会延长普通GC的周期,但会增加每次GC的时间;小的年老代会导致更频繁的Full GC

    • 更小的年轻代必然导致更大年老代,小的年轻代会导致普通GC很频繁,但每次的GC时间会更短;大的年老代会减少Full GC的频率

    • 如何选择应该依赖应用程序对象生命周期的分布情况:如果应用存在大量的临时对象,应该选择更大的年轻代;如果存在相对较多的持久对象,年老代应该适当增大。但很多应用都没有这样明显的特性,在抉择时应该根据以下两点:(A)本着Full GC尽量少的原则,让年老代尽量缓存常用对象,JVM的默认比例1:2也是这个道理 (B)通过观察应用一段时间,看其他在峰值时年老代会占多少内存,在不影响Full GC的前提下,根据实际情况加大年轻代,比如可以把比例控制在1:1。但应该给年老代至少预留1/3的增长空间

    (4)在配置较好的机器上(比如多核、大内存),可以为年老代选择并行收集算法: -XX:+UseParallelOldGC ,默认为Serial收集

    (5)线程堆栈的设置:每个线程默认会开启1M的堆栈,用于存放栈帧、调用参数、局部变量等,对大多数应用而言这个默认值太了,一般256K就足用。理论上,在内存不变的情况下,减少每个线程的堆栈,可以产生更多的线程,但这实际上还受限于操作系统。

    (4)可以通过下面的参数打Heap Dump信息

    • -XX:HeapDumpPath

    • -XX:+PrintGCDetails

    • -XX:+PrintGCTimeStamps

    • -Xloggc:/usr/aaa/dump/heap_trace.txt

      通过下面参数可以控制OutOfMemoryError时打印堆的信息

    • -XX:+HeapDumpOnOutOfMemoryError

    请看一下一个时间的Java参数配置:(服务器:Linux 64Bit,8Core×16G)

    JAVA_OPTS="$JAVA_OPTS -server -Xms3G -Xmx3G -Xss256k -XX:PermSize=128m -XX:MaxPermSize=128m -XX:+UseParallelOldGC -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/usr/aaa/dump -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:/usr/aaa/dump/heap_trace.txt -XX:NewSize=1G -XX:MaxNewSize=1G"

    经过观察该配置非常稳定,每次普通GC的时间在10ms左右,Full GC基本不发生,或隔很长很长的时间才发生一次

    通过分析dump文件可以发现,每个1小时都会发生一次Full GC,经过多方求证,只要在JVM中开启了JMX服务,JMX将会1小时执行一次Full GC以清除引用,关于这点请参考附件文档。

    参考资料:

    http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html

    来源:http://blog.csdn.net/chen77716/article/details/5695893

    =======================================================================================

    调优方法

    一切都是为了这一步,调优,在调优之前,我们需要记住下面的原则:

    1、多数的Java应用不需要在服务器上进行GC优化;

    2、多数导致GC问题的Java应用,都不是因为我们参数设置错误,而是代码问题;

    3、在应用上线之前,先考虑将机器的JVM参数设置到最优(最适合);

    4、减少创建对象的数量;

    5、减少使用全局变量和大对象;

    6、GC优化是到最后不得已才采用的手段;

    7、在实际使用中,分析GC情况优化代码比优化GC参数要多得多;

    **GC优化的目的有两个:

    1、将转移到老年代的对象数量降低到最小;

    2、减少full GC的执行时间;

    为了达到上面的目的,一般地,你需要做的事情有:

    1、减少使用全局变量和大对象;

    2、调整新生代的大小到最合适;

    3、设置老年代的大小为最合适;

    4、选择合适的GC收集器;

    在上面的4条方法中,用了几个“合适”,那究竟什么才算合适,一般的,请参考上面“收集器搭配”和“启动内存分配”两节中的建议。但这些建议不是万能的,需要根据您的机器和应用情况进行发展和变化,实际操作中,可以将两台机器分别设置成不同的GC参数,并且进行对比,选用那些确实提高了性能或减少了GC时间的参数。

    真正熟练的使用GC调优,是建立在多次进行GC监控和调优的实战经验上的,进行监控和调优的一般步骤为:

    1,监控GC的状态

    使用各种JVM工具,查看当前日志,分析当前JVM参数设置,并且分析当前堆内存快照和gc日志,根据实际的各区域内存划分和GC执行时间,觉得是否进行优化;

    2,分析结果,判断是否需要优化

    如果各项参数设置合理,系统没有超时日志出现,GC频率不高,GC耗时不高,那么没有必要进行GC优化;如果GC时间超过1-3秒,或者频繁GC,则必须优化;

    注:如果满足下面的指标,则一般不需要进行GC:

    Minor GC执行时间不到50ms;

    Minor GC执行不频繁,约10秒一次;

    Full GC执行时间不到1s;

    Full GC执行频率不算频繁,不低于10分钟1次;

    3,调整GC类型和内存分配

    如果内存分配过大或过小,或者采用的GC收集器比较慢,则应该优先调整这些参数,并且先找1台或几台机器进行beta,然后比较优化过的机器和没有优化的机器的性能对比,并有针对性的做出最后选择;

    4,不断的分析和调整

    通过不断的试验和试错,分析并找到最合适的参数

    5,全面应用参数

    如果找到了最合适的参数,则将这些参数应用到所有服务器,并进行后续跟踪。

    3d11dfb9-18ca-32f6-8e45-48522c670e92.jpeg

    相关文章

      网友评论

        本文标题:JVM性能调优

        本文链接:https://www.haomeiwen.com/subject/ytvpvxtx.html