美文网首页
强化学习第一波学习资料整理

强化学习第一波学习资料整理

作者: 荒剑离 | 来源:发表于2019-12-28 19:30 被阅读0次

    线上课程

    代码实践

    1. Reinforcement-Learning-Tutorial
    2. Reinforcement Q-Learning from Scratch in Python with OpenAI Gym
    3. Schooling Flappy Bird: A Reinforcement Learning Tutorial
    4. Reinforcement Learning Tutorial Part 1: Q-Learning
    1. DeepRL-Tutorials
    2. Reinforcement_learning_tutorial_with_demo
    3. basic_reinforcement_learning

    顶刊论文

    1. LeCun, Bengio and Hinton, Deep Learning, Nature, May 2015
    2. Jordan and Mitchell, Machine learning: Trends, perspectives, and prospects, Science, July 2015
    3. Michael Littman, Reinforcement learning improves behaviour from evaluative feedback, Nature, May 2015

    综述论文

    • Deep Reinforcement Learning: An Overview
      这篇论文概述了深度强化学习中一些最新精彩工作,主要说明了六个核心要素、六个重要机制和十二个有关应用。文章中先介绍了机器学习、深度学习和强化学习的背景,接着讨论了强化学习的核心要素,包括DQN网络、策略、奖励、模型、规划和搜索。
    • 深度强化学习综述- 计算机学报

    有趣论文

    • Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach to personalized news article recommendation. In WWW.

    深度博文

    相关文章

      网友评论

          本文标题:强化学习第一波学习资料整理

          本文链接:https://www.haomeiwen.com/subject/yvnsoctx.html