线上课程
代码实践
- Reinforcement-Learning-Tutorial
- Reinforcement Q-Learning from Scratch in Python with OpenAI Gym
- Schooling Flappy Bird: A Reinforcement Learning Tutorial
- Reinforcement Learning Tutorial Part 1: Q-Learning
顶刊论文
- LeCun, Bengio and Hinton, Deep Learning, Nature, May 2015
- Jordan and Mitchell, Machine learning: Trends, perspectives, and prospects, Science, July 2015
- Michael Littman, Reinforcement learning improves behaviour from evaluative feedback, Nature, May 2015
综述论文
-
Deep Reinforcement Learning: An Overview
这篇论文概述了深度强化学习中一些最新精彩工作,主要说明了六个核心要素、六个重要机制和十二个有关应用。文章中先介绍了机器学习、深度学习和强化学习的背景,接着讨论了强化学习的核心要素,包括DQN网络、策略、奖励、模型、规划和搜索。 - 深度强化学习综述- 计算机学报
有趣论文
- Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach to personalized news article recommendation. In WWW.
网友评论