通过日志分析每个移动设备对服务器的访问的总上行流量,下行流量。然后先根据上行流量倒排序,如果相等就根据下行流量倒排序,如果上行流量和下行流量都相等,就根据时间戳排序。
AppAccessLog.java
该类是整个Spark应用的主类,这里面主要写业务逻辑代码。包含计算总上行和下行流量,RDD的一些操作等。
import java.util.ArrayList;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import scala.Tuple2;
import scala.Tuple4;
public class AppAccessLog {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("AppAccessLog");
JavaSparkContext sc = new JavaSparkContext(conf);
SparkSession spark = SparkSession.builder().enableHiveSupport().getOrCreate();
// create RDD
JavaRDD<String> AppAccessLogRDD = sc.textFile("hdfs:///temp/data/access.log");
// transform into PairRDD
JavaPairRDD<String, AppAccessLogInfo> AppAccessLogPairRDD =
mapToPairRDD(AppAccessLogRDD);
// aggregate DeviceID
JavaPairRDD<String, AppAccessLogInfo> AppAccessAggregatePairRDD =
agggregateToPairRDD(AppAccessLogPairRDD);
// transform into sortByKeyPairRDD
JavaPairRDD<AppAccessLogSortInfo, String> AppAccessSortByKeyLogPairRDD =
mapToSortByKeyPairRDD(AppAccessAggregatePairRDD);
// transformation sortBykey
JavaPairRDD<AppAccessLogSortInfo, String> resultRDD =
AppAccessSortByKeyLogPairRDD.sortByKey(false);
// get Top 10
List<Tuple2<AppAccessLogSortInfo, String>> top10 = resultRDD.take(10);
// print Top 10
for(Tuple2<AppAccessLogSortInfo, String> t : top10) {
System.out.println(t._2+" " + t._1.getUpTraffic() + " " + t._1.getDownTraffic() + " " + t._1.getTimpStamp());
}
// JDK 1.8
// top10.forEach(t -> System.out.println(t._2+" " + t._1.getUpTraffic() + " " + t._1.getDownTraffic() + " " + t._1.getTimpStamp()));
// create RowRDD
JavaRDD<Row> rowRDD = mapToRowRDD(resultRDD);
// create schema
ArrayList<StructField> fields = getColumnName();
StructType schema = DataTypes.createStructType(fields);
// create DataFrame
Dataset<Row> logDF = spark.createDataFrame(rowRDD, schema);
// save to Hive
logDF.write().mode("overwrite").saveAsTable("test.log");
spark.close();
sc.close();
}
//
private static ArrayList<StructField> getColumnName() {
ArrayList<StructField> fields = new ArrayList<StructField>();
StructField field = null;
field = DataTypes.createStructField("timeStame", DataTypes.StringType, true);
fields.add(field);
field = DataTypes.createStructField("DeviceID", DataTypes.StringType, true);
fields.add(field);
field = DataTypes.createStructField("upTraffic", DataTypes.StringType, true);
fields.add(field);
field = DataTypes.createStructField("downTraffic", DataTypes.StringType, true);
fields.add(field);
return fields;
}
// transform resultRDD into RowRDD
private static JavaRDD<Row> mapToRowRDD(JavaPairRDD<AppAccessLogSortInfo, String> resultRDD) {
JavaRDD<Tuple4<String, String, String, String>> tempRDD = resultRDD
.map(new Function<Tuple2<AppAccessLogSortInfo, String>, Tuple4<String, String, String, String>>() {
private static final long serialVersionUID = 7952741378495112332L;
@Override
public Tuple4<String, String, String, String> call(Tuple2<AppAccessLogSortInfo, String> tuple)
throws Exception {
String DeviceID = tuple._2;
AppAccessLogSortInfo accessLogSortInfo = tuple._1;
return new Tuple4<String, String, String, String>(
String.valueOf(accessLogSortInfo.getTimpStamp()), DeviceID,
String.valueOf(accessLogSortInfo.getUpTraffic()),
String.valueOf(accessLogSortInfo.getDownTraffic()));
}
});
return tempRDD.map(new Function<Tuple4<String, String, String, String>, Row>() {
private static final long serialVersionUID = -1227536252899303985L;
@Override
public Row call(Tuple4<String, String, String, String> tuple) throws Exception {
return RowFactory.create(tuple._1(), tuple._2(), tuple._3(), tuple._4());
}
});
}
// aggregate DeviceID calculate total of upTraffic/downTraffic and select
// minimum timeStamp
private static JavaPairRDD<String, AppAccessLogInfo> agggregateToPairRDD(
JavaPairRDD<String, AppAccessLogInfo> appAccessLogPairRDD) {
// transformation reduceByKey
return appAccessLogPairRDD.reduceByKey(new Function2<AppAccessLogInfo, AppAccessLogInfo, AppAccessLogInfo>() {
private static final long serialVersionUID = -8552789221394152834L;
@Override
public AppAccessLogInfo call(AppAccessLogInfo v1, AppAccessLogInfo v2) throws Exception {
Long timeStamp = v1.getTimeStamp() > v2.getTimeStamp() ? v2.getTimeStamp() : v1.getTimeStamp();
Long upTraffic = v1.getUpTraffic() + v2.getUpTraffic();
Long downTraffic = v1.getDownTraffic() + v2.getDownTraffic();
AppAccessLogInfo accessLogInfo = new AppAccessLogInfo();
accessLogInfo.setUpTraffic(upTraffic);
accessLogInfo.setDownTraffic(downTraffic);
accessLogInfo.setTimeStamp(timeStamp);
return accessLogInfo;
}
});
}
// transform AppAccessLogPairRDD into AppAccessSortByKeyLogPairRDD
private static JavaPairRDD<AppAccessLogSortInfo, String> mapToSortByKeyPairRDD(
JavaPairRDD<String, AppAccessLogInfo> AppAccessAggregatePairRDD) {
// transformation mapToPair
return AppAccessAggregatePairRDD
.mapToPair(new PairFunction<Tuple2<String, AppAccessLogInfo>, AppAccessLogSortInfo, String>() {
private static final long serialVersionUID = -4778843695438540948L;
@Override
public Tuple2<AppAccessLogSortInfo, String> call(Tuple2<String, AppAccessLogInfo> tuple)
throws Exception {
String DeviceID = tuple._1;
AppAccessLogInfo appAccessLogInfo = tuple._2;
AppAccessLogSortInfo accessLogSortInfo = new AppAccessLogSortInfo();
accessLogSortInfo.setTimpStamp(appAccessLogInfo.getTimeStamp());
accessLogSortInfo.setUpTraffic(appAccessLogInfo.getUpTraffic());
accessLogSortInfo.setDownTraffic(appAccessLogInfo.getDownTraffic());
return new Tuple2<AppAccessLogSortInfo, String>(accessLogSortInfo, DeviceID);
}
});
}
// transform AppAccessLogRDD into AppAccessLogPairRDD
private static JavaPairRDD<String, AppAccessLogInfo> mapToPairRDD(JavaRDD<String> AppAccessLogRDD) {
// transformation mapToPair
return AppAccessLogRDD.mapToPair(new PairFunction<String, String, AppAccessLogInfo>() {
private static final long serialVersionUID = 5998646612001714125L;
@Override
public Tuple2<String, AppAccessLogInfo> call(String line) throws Exception {
String[] lineSplitArray = line.split("\t");
String DeviceID = lineSplitArray[1];
Long timeStamp = Long.valueOf(lineSplitArray[0]);
Long upTraffic = Long.valueOf(lineSplitArray[2]);
Long downTraffic = Long.valueOf(lineSplitArray[3]);
AppAccessLogInfo appAccessLogInfo = new AppAccessLogInfo();
appAccessLogInfo.setTimeStamp(timeStamp);
appAccessLogInfo.setUpTraffic(upTraffic);
appAccessLogInfo.setDownTraffic(downTraffic);
return new Tuple2<String, AppAccessLogInfo>(DeviceID, appAccessLogInfo);
}
});
}
}
这个类中除了mian方法以外,还有三个比较重要的方法,mapToPairRDD
,agggregateToPairRDD
,mapToSortByKeyPairRDD
。
-
从main方法开始看,首先需要创建一个SparkContext,然后通过SparkContext来创建初始RDD。在这个过程中。Spark会完成一系列的初始化工作,包括向Master注册Application,启动Excutor,以及Excutor的反向注册等。
-
接下来,调用
mapToPair
方法把初始RDD转换成PairRDD,为了后面做聚合操作,在这里,用一个实体类AppAccessLogInfo
把每条记录的upTraffic,downTraffic,timeStamp进行封装,然后,使用DeviceID来作为Key,AppAccessLogInfo
类对象作为值,最终得到一个PairRDD。 -
然后,调用
agggregateToPairRDD
方法对AppAccessLogPairRDD做聚合操作,在这个方法中,调用了AppAccessLogPairRDD的reduceByKey
方法通过DeviceID(设备ID)来计算每台设备的总上行流量/下行流量,由于每台设备对应多个访问时间戳,在这里取最小的当作后面排序的依据。 -
当做完
reduceByKey
之后,就需要对总上行流量,总下行流量,时间戳进行排序了。首先,要想使用PairRDD的sortByKey
方法,需要改变RDD的结构,这里需要调用mapToSortByKeyPairRDD
方法,该方法需要另一个实体类AppAccessLogSortInfo
,把使用aggragateToPairRDD
方法得到的AppAccessAggregatePairRDD中的每个Tuple2类型的元素的value所封装的信息提取出来,并把这些信息重新使用AppAccessLogSortInfo
类来封装,来组成一个能够实现Key排序的AppAccessLogSortByKeyPairRDD。 -
最后调用AppAccessLogSortByKeyPairRDD的sortByKey方法排序,并获取访问流量最大的前十个设备。
-
把最后结果保存到Hive,首先需要把resultRDD转换成JavaRDD<Row> 类型的RDD,在
mapToRowRDD
这个方法中,把所有的数据都提取出来,并把每一行包装成Tuple4类型(四个字段),然后使用RowFactory.create()方法,把每一个Tuple4转换成Row对象(要把Tuple4的每一个元素都传进RowFactory.create()方法),就得到了JavaRDD<Row>类型的RDD。接下来需要创建Schema,首先要对Row对象的每一个元素创建StructField对象也就是field(列名),使用DataTypes.createStructField()方法,其中第一个参数是列名,第二个参数是列字段类型,第三个参数代表是否允许为空。最后使用DataTypes.createStructTypes()方法创建Schema,该方法的参数是一个存放StructField对象的集合(里面存放着RowRDD每一列的列名),返回值为StructType。最后调用SparkSession对象的createDataFrame方法,创建一个DataFrame,其中第一个参数是RowRDD,第二个参数是Schema,返回值是Dataset<Row>类型。然后把创建好的DataFrame保存到Hive表
AppAccessLogInfo.java
由于该类对象其实是作为PairRDD的value,需要在网络间传输,所以需要实现Serializable接口,使之能够进行序列化和反序列化。
import java.io.Serializable;
public class AppAccessLogInfo implements Serializable{
private static final long serialVersionUID = 2298114085058810487L;
private Long timeStamp;
private Long upTraffic;
private Long downTraffic;
public AppAccessLogInfo() {}
public AppAccessLogInfo(Long timeStamp, Long upTraffic, Long downTraffic) {
this.timeStamp = timeStamp;
this.upTraffic = upTraffic;
this.downTraffic = downTraffic;
}
public Long getTimeStamp() {
return timeStamp;
}
public void setTimeStamp(Long timeStamp) {
this.timeStamp = timeStamp;
}
public Long getUpTraffic() {
return upTraffic;
}
public void setUpTraffic(Long upTraffic) {
this.upTraffic = upTraffic;
}
public Long getDownTraffic() {
return downTraffic;
}
public void setDownTraffic(Long downTraffic) {
this.downTraffic = downTraffic;
}
}
AppAccessLogSortInfo.java
和AppAccessLogInfo类一样,这个类也需要实现Serializable接口,同时还需要实现Ordered接口,因为需要对此类的对象进行排序。
import java.io.Serializable;
import scala.math.Ordered;
/**
* need implements Ordered interface and Serializable interface
*
*/
public class AppAccessLogSortInfo implements Ordered<AppAccessLogSortInfo>, Serializable {
private static final long serialVersionUID = 7006437160384780829L;
private Long timeStamp;
private Long upTraffic;
private Long downTraffic;
public AppAccessLogSortInfo() {}
public AppAccessLogSortInfo(Long timeStamp, Long upTraffic, Long downTraffic) {
super();
this.timeStamp = timeStamp;
this.upTraffic = upTraffic;
this.downTraffic = downTraffic;
}
@Override
public boolean $greater(AppAccessLogSortInfo other) {
if (upTraffic > other.upTraffic) {
return true;
} else if (upTraffic == other.upTraffic && downTraffic > other.downTraffic) {
return true;
} else if (upTraffic == other.upTraffic && downTraffic == other.downTraffic && timeStamp > other.timeStamp) {
return true;
}
return false;
}
@Override
public boolean $greater$eq(AppAccessLogSortInfo other) {
if($greater(other)) {
return true;
} else if (upTraffic == other.upTraffic && downTraffic == other.downTraffic && timeStamp == other.timeStamp){
return true;
}
return false;
}
@Override
public boolean $less(AppAccessLogSortInfo other) {
if(upTraffic < other.upTraffic) {
return true;
} else if (upTraffic == other.upTraffic && downTraffic < other.downTraffic) {
return true;
} else if (upTraffic == other.upTraffic && downTraffic == other.downTraffic && timeStamp < other.timeStamp) {
return true;
}
return false;
}
@Override
public boolean $less$eq(AppAccessLogSortInfo other) {
if($less(other)) {
return true;
} else if (upTraffic == other.upTraffic && downTraffic == other.downTraffic && timeStamp == other.timeStamp) {
return true;
}
return false;
}
@Override
public int compare(AppAccessLogSortInfo other) {
int timeStampGap = (int) (timeStamp - other.timeStamp);
int upTrafficGap = (int) (upTraffic - other.upTraffic);
int downTrafficGap = (int) (downTraffic - other.downTraffic);
if(upTrafficGap != 0) {
return upTrafficGap;
} else if (downTrafficGap != 0) {
return downTrafficGap;
} else if (timeStampGap != 0) {
return timeStampGap;
}
return 0;
}
@Override
public int compareTo(AppAccessLogSortInfo other) {
int timeStampGap = (int) (timeStamp - other.timeStamp);
int upTrafficGap = (int) (upTraffic - other.upTraffic);
int downTrafficGap = (int) (downTraffic - other.downTraffic);
if(upTrafficGap != 0) {
return upTrafficGap;
} else if (downTrafficGap != 0) {
return downTrafficGap;
} else if (timeStampGap != 0) {
return timeStampGap;
}
return 0;
}
public Long getTimpStamp() {
return timeStamp;
}
public void setTimpStamp(Long timpStamp) {
this.timeStamp = timpStamp;
}
public Long getUpTraffic() {
return upTraffic;
}
public void setUpTraffic(Long upTraffic) {
this.upTraffic = upTraffic;
}
public Long getDownTraffic() {
return downTraffic;
}
public void setDownTraffic(Long downTraffic) {
this.downTraffic = downTraffic;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + ((downTraffic == null) ? 0 : downTraffic.hashCode());
result = prime * result + ((timeStamp == null) ? 0 : timeStamp.hashCode());
result = prime * result + ((upTraffic == null) ? 0 : upTraffic.hashCode());
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
AppAccessLogSortInfo other = (AppAccessLogSortInfo) obj;
if (downTraffic == null) {
if (other.downTraffic != null)
return false;
} else if (!downTraffic.equals(other.downTraffic))
return false;
if (timeStamp == null) {
if (other.timeStamp != null)
return false;
} else if (!timeStamp.equals(other.timeStamp))
return false;
if (upTraffic == null) {
if (other.upTraffic != null)
return false;
} else if (!upTraffic.equals(other.upTraffic))
return false;
return true;
}
}
网友评论