美文网首页
DNA甲基化芯片分析01: 使用methylumi和limma分

DNA甲基化芯片分析01: 使用methylumi和limma分

作者: 生信探索 | 来源:发表于2024-04-30 17:19 被阅读0次

    前言

    27K的数据是很老的芯片数据,但是客户有需求就要找方法分析,主流的DNA甲基化芯片R包minfi和champ都只支持450K和850K的芯片。所以在bioconductor中搜索到了methylumi这个包,可以从idat读数据,经过质控得到beta值矩阵,之后用limma做差异分析。

    可以参考这篇文章[https://www.ncbi.nlm.nih.gov/pubmed/32375395]

    450K和850K的芯片分析就简单多了,生信技能树也写好了pipeline可以参考[https://github.com/jmzeng1314/methy_array]

    从TCGA下载

    library(TCGAbiolinks)

    m1 <- GDCquery(

        project = "TCGA-KIRC",

        data.category = "DNA Methylation",

        data.type = "Masked Intensities",

        data.format = "idat",

        platform = "Illumina Human Methylation 27"

    )

    GDCdownload(m1)

    移动文件到KIRC_27K_idat文件夹下

    mv GDCdata/TCGA-KIRC/harmonized/DNA_Methylation/Masked_Intensities/*idat KIRC_27K_idat

    制作重命名shell脚本

    metadata.cart.2023-02-09.json这个文件是在TCGA官网选中样本和数据类型后下载的样本信息,里边包含了样本名和文件名。

    library(jsonlite)

    library(magrittr)

    library(data.table)

    j=jsonlite::read_json('metadata.cart.2023-02-09.json')

    tb <- map_dfr(j,~tibble(file_name=.x$file_name,new_name=.x$associated_entities[[1]]$entity_submitter_id))

    tb %<>% arrange(new_name)

    colors = str_split(tb$file_name,'_',simplify = T)[,3]

    n=rep(1:(826/2),2) %>% sort()

    ns = sprintf("%03d",n)

    sample_name = tb$new_name

    tb$new_name <- paste0(tb$new_name,'_','R',ns,'C',ns,'_',colors)

    tb$mv = "mv"

    fwrite(tb[,c(3,1,2)],"KIRC_27K_idat/rename.sh",sep=' ',col.names=F )

    重命名

    cd KIRC_27K_idat

    bash rename.sh

    重命名脚本的前几行

    mv 348750ad-930b-4a62-98fc-165a8216cf42_noid_Grn.idat TCGA-A3-3306-01A-01D-0859-05_R001C001_Grn.idat

    mv 348750ad-930b-4a62-98fc-165a8216cf42_noid_Red.idat TCGA-A3-3306-01A-01D-0859-05_R001C001_Red.idat

    mv 63c1410d-9b54-47a8-bb8f-08a030dacab0_noid_Grn.idat TCGA-A3-3306-11A-01D-0859-05_R002C002_Grn.idat

    mv 63c1410d-9b54-47a8-bb8f-08a030dacab0_noid_Red.idat TCGA-A3-3306-11A-01D-0859-05_R002C002_Red.idat

    methylumi读数据

    idatPath必须是绝对路径

    idatPath <- "~/Project/20230203_DNAmeth/data/KIRC_27K_idat"

    mset27k <- methylumIDAT(getBarcodes(path=idatPath), idatPath=idatPath)

    sampleNames(mset27k) <- unique(sample_name)

    标准化前的质控图

    qc.probe.plot(mset27k, by.type=TRUE)

    标准化后的质控图

    mset27k_pp <- stripOOB(normalizeMethyLumiSet(methylumi.bgcorr(mset27k)))

    qc.probe.plot(mset27k_pp, by.type=TRUE)

    limma差异分析

    跟mRNA芯片的差异分析一样,最后的deg_df可以用于绘制火山图

    beta=betas(mset27k_pp)

    beta %<>% as.data.frame() %>% dplyr::select(matches('^.{13}[01]1A'))

    group = ifelse(str_detect(colnames(beta),'^.{13}01'),'Tumor','Normal')

    design <- model.matrix(~ 0 + factor(group))

    colnames(design) <- levels(factor(group))

    rownames(design) <- colnames(beta)

    contrasts <- paste0("Tumor", "-", "Normal")

    contrast.matrix <- makeContrasts(contrasts = contrasts, levels = design)

    fit <- lmFit(beta, design)

    fit <- contrasts.fit(fit, contrast.matrix)

    fit <- eBayes(fit, 0.01)

    deg_df <- topTable(fit, adjust = "fdr", sort.by = "B", number = nrow(beta)) %>% na.omit()

    Reference

    https://www.bioconductor.org/packages/release/bioc/vignettes/methylumi/inst/doc/methylumi.pdf

    https://www.bioconductor.org/packages/release/bioc/manuals/methylumi/man/methylumi.pdf

    https://www.bioconductor.org/packages/release/bioc/vignettes/methylumi/inst/doc/methylumi450k.pdf

    https://mp.weixin.qq.com/s/BIxtWJAO8AXHbNDItS7PFQ

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291297/

    相关文章

      网友评论

          本文标题:DNA甲基化芯片分析01: 使用methylumi和limma分

          本文链接:https://www.haomeiwen.com/subject/ywnxfjtx.html