美文网首页Java
Java 实现生产者 : 消费者模型

Java 实现生产者 : 消费者模型

作者: 3f29eb5edacd | 来源:发表于2019-02-08 14:19 被阅读26次

来源:猴子007 ,
monkeysayhi.github.io/2017/10/08/Java实现生产者-消费者模型/

考查Java的并发编程时,手写“生产者-消费者模型”是一个经典问题。有如下几个考点:

  1. 对Java并发模型的理解
  2. 对Java并发编程接口的熟练程度
  3. bug free
  4. coding style

本文主要归纳了4种写法,阅读后,最好在白板上练习几遍,检查自己是否掌握。这4种写法或者编程接口不同,或者并发粒度不同,但本质是相同的——都是在使用或实现BlockingQueue。

生产者-消费者模型

网上有很多生产者-消费者模型的定义和实现。本文研究最常用的有界生产者-消费者模型,简单概括如下:

  • 生产者持续生产,直到缓冲区满,阻塞;缓冲区不满后,继续生产
  • 消费者持续消费,直到缓冲区空,阻塞;缓冲区不空后,继续消费
  • 生产者可以有多个,消费者也可以有多个

可通过如下条件验证模型实现的正确性:

  • 同一产品的消费行为一定发生在生产行为之后
  • 任意时刻,缓冲区大小不小于0,不大于限制容量

该模型的应用和变种非常多,不赘述。

几种写法

准备

面试时可语言说明以下准备代码。关键部分需要实现,如AbstractConsumer。

下面会涉及多种生产者-消费者模型的实现,可以先抽象出关键的接口,并实现一些抽象类:

public interface Consumer {

  void consume() throws InterruptedException;

}
public interface Producer {

  void produce() throws InterruptedException;

}
abstract class AbstractConsumer implements Consumer, Runnable {

  @Override

  public void run() {

    while (true) {

      try {

        consume();

      } catch (InterruptedException e) {

        e.printStackTrace();

        break;

      }

    }

  }

}
abstract class AbstractProducer implements Producer, Runnable {

  @Override

  public void run() {

    while (true) {

      try {

        produce();

      } catch (InterruptedException e) {

        e.printStackTrace();

        break;

      }

    }

  }

}

不同的模型实现中,生产者、消费者的具体实现也不同,所以需要为模型定义抽象工厂方法:

public interface Model {

  Runnable newRunnableConsumer();

  Runnable newRunnableProducer();

}

我们将Task作为生产和消费的单位:

public class Task {

  public int no;

  public Task(int no) {

    this.no = no;

  }

}

如果需求还不明确(这符合大部分工程工作的实际情况),建议边实现边抽象,不要“面向未来编程”。

实现一:BlockingQueue

BlockingQueue的写法最简单。核心思想是,把并发和容量控制封装在缓冲区中。而BlockingQueue的性质天生满足这个要求。

public class BlockingQueueModel implements Model {

  private final BlockingQueue<Task> queue;

  private final AtomicInteger increTaskNo = new AtomicInteger(0);

  public BlockingQueueModel(int cap) {

    // LinkedBlockingQueue 的队列是 lazy-init 的,但 ArrayBlockingQueue 在创建时就已经 init

    this.queue = new LinkedBlockingQueue<>(cap);

  }

  @Override

  public Runnable newRunnableConsumer() {

    return new ConsumerImpl();

  }

  @Override

  public Runnable newRunnableProducer() {

    return new ProducerImpl();

  }

  private class ConsumerImpl extends AbstractConsumer implements Consumer, Runnable {

    @Override

    public void consume() throws InterruptedException {

      Task task = queue.take();

      // 固定时间范围的消费,模拟相对稳定的服务器处理过程

      Thread.sleep(500 + (long) (Math.random() * 500));

      System.out.println("consume: " + task.no);

    }

  }

  private class ProducerImpl extends AbstractProducer implements Producer, Runnable {

    @Override

    public void produce() throws InterruptedException {

      // 不定期生产,模拟随机的用户请求

      Thread.sleep((long) (Math.random() * 1000));

      Task task = new Task(increTaskNo.getAndIncrement());

      queue.put(task);

      System.out.println("produce: " + task.no);

    }

  }

  public static void main(String[] args) {

    Model model = new BlockingQueueModel(3);

    for (int i = 0; i < 2; i++) {

      new Thread(model.newRunnableConsumer()).start();

    }

    for (int i = 0; i < 5; i++) {

      new Thread(model.newRunnableProducer()).start();

    }

  }

}

截取前面的一部分输出:

produce: 0

produce: 4

produce: 2

produce: 3

produce: 5

consume: 0

produce: 1

consume: 4

produce: 7

consume: 2

produce: 8

consume: 3

produce: 6

consume: 5

produce: 9

consume: 1

produce: 10

consume: 7

由于操作“出队/入队+日志输出”不是原子的,所以上述日志的绝对顺序与实际的出队/入队顺序有出入,但对于同一个任务号task.no,其consume日志一定出现在其produce日志之后,即:同一任务的消费行为一定发生在生产行为之后。缓冲区的容量留给读者验证。符合两个验证条件。

BlockingQueue写法的核心只有两行代码,并发和容量控制都封装在了BlockingQueue中,正确性由BlockingQueue保证。面试中首选该写法,自然美观简单。

实现二:wait && notify

如果不能将并发与容量控制都封装在缓冲区中,就只能由消费者与生产者完成。最简单的方案是使用朴素的wait && notify机制。

public class WaitNotifyModel implements Model {

  private final Object BUFFER_LOCK = new Object();

  private final Queue<Task> buffer = new LinkedList<>();

  private final int cap;

  private final AtomicInteger increTaskNo = new AtomicInteger(0);

  public WaitNotifyModel(int cap) {

    this.cap = cap;

  }

  @Override

  public Runnable newRunnableConsumer() {

    return new ConsumerImpl();

  }

  @Override

  public Runnable newRunnableProducer() {

    return new ProducerImpl();

  }

  private class ConsumerImpl extends AbstractConsumer implements Consumer, Runnable {

    @Override

    public void consume() throws InterruptedException {

      synchronized (BUFFER_LOCK) {

        while (buffer.size() == 0) {

          BUFFER_LOCK.wait();

        }

        Task task = buffer.poll();

        assert task != null;

        // 固定时间范围的消费,模拟相对稳定的服务器处理过程

        Thread.sleep(500 + (long) (Math.random() * 500));

        System.out.println("consume: " + task.no);

        BUFFER_LOCK.notifyAll();

      }

    }

  }

  private class ProducerImpl extends AbstractProducer implements Producer, Runnable {

    @Override

    public void produce() throws InterruptedException {

      // 不定期生产,模拟随机的用户请求

      Thread.sleep((long) (Math.random() * 1000));

      synchronized (BUFFER_LOCK) {

        while (buffer.size() == cap) {

          BUFFER_LOCK.wait();

        }

        Task task = new Task(increTaskNo.getAndIncrement());

        buffer.offer(task);

        System.out.println("produce: " + task.no);

        BUFFER_LOCK.notifyAll();

      }

    }

  }

  public static void main(String[] args) {

    Model model = new WaitNotifyModel(3);

    for (int i = 0; i < 2; i++) {

      new Thread(model.newRunnableConsumer()).start();

    }

    for (int i = 0; i < 5; i++) {

      new Thread(model.newRunnableProducer()).start();

    }

  }

}

验证方法同上。

朴素的wait && notify机制不那么灵活,但足够简单。synchronized、wait、notifyAll的用法可参考【Java并发编程】之十:使用wait/notify/notifyAll实现线程间通信的几点重要说明,着重理解唤醒与锁竞争的区别。

http://blog.csdn.net/ns_code/article/details/17225469

实现三:简单的Lock && Condition

我们要保证理解wait && notify机制。实现时可以使用Object类提供的wait()方法与notifyAll()方法,但更推荐的方式是使用java.util.concurrent包提供的Lock && Condition。

public class LockConditionModel1 implements Model {

  private final Lock BUFFER_LOCK = new ReentrantLock();

  private final Condition BUFFER_COND = BUFFER_LOCK.newCondition();

  private final Queue<Task> buffer = new LinkedList<>();

  private final int cap;

  private final AtomicInteger increTaskNo = new AtomicInteger(0);

  public LockConditionModel1(int cap) {

    this.cap = cap;

  }

  @Override

  public Runnable newRunnableConsumer() {

    return new ConsumerImpl();

  }

  @Override

  public Runnable newRunnableProducer() {

    return new ProducerImpl();

  }

  private class ConsumerImpl extends AbstractConsumer implements Consumer, Runnable {

    @Override

    public void consume() throws InterruptedException {

      BUFFER_LOCK.lockInterruptibly();

      try {

        while (buffer.size() == 0) {

          BUFFER_COND.await();

        }

        Task task = buffer.poll();

        assert task != null;

        // 固定时间范围的消费,模拟相对稳定的服务器处理过程

        Thread.sleep(500 + (long) (Math.random() * 500));

        System.out.println("consume: " + task.no);

        BUFFER_COND.signalAll();

      } finally {

        BUFFER_LOCK.unlock();

      }

    }

  }

  private class ProducerImpl extends AbstractProducer implements Producer, Runnable {

    @Override

    public void produce() throws InterruptedException {

      // 不定期生产,模拟随机的用户请求

      Thread.sleep((long) (Math.random() * 1000));

      BUFFER_LOCK.lockInterruptibly();

      try {

        while (buffer.size() == cap) {

          BUFFER_COND.await();

        }

        Task task = new Task(increTaskNo.getAndIncrement());

        buffer.offer(task);

        System.out.println("produce: " + task.no);

        BUFFER_COND.signalAll();

      } finally {

        BUFFER_LOCK.unlock();

      }

    }

  }

  public static void main(String[] args) {

    Model model = new LockConditionModel1(3);

    for (int i = 0; i < 2; i++) {

      new Thread(model.newRunnableConsumer()).start();

    }

    for (int i = 0; i < 5; i++) {

      new Thread(model.newRunnableProducer()).start();

    }

  }

}

该写法的思路与实现二的思路完全相同,仅仅将锁与条件变量换成了Lock和Condition。

实现四:更高并发性能的Lock && Condition

现在,如果做一些实验,你会发现,实现一的并发性能高于实现二、三。暂且不关心BlockingQueue的具体实现,来分析看如何优化实现三(与实现二的思路相同,性能相当)的性能。

分析实现三的瓶颈

最好的查证方法是记录方法执行时间,这样可以直接定位到真正的瓶颈。但此问题较简单,我们直接用“瞪眼法”分析。

实现三的并发瓶颈很明显,因为在锁 BUFFER_LOCK 看来,任何消费者线程与生产者线程都是一样的。换句话说,同一时刻,最多只允许有一个线程(生产者或消费者,二选一)操作缓冲区 buffer。

而实际上,如果缓冲区是一个队列的话,“生产者将产品入队”与“消费者将产品出队”两个操作之间没有同步关系,可以在队首出队的同时,在队尾入队。理想性能可提升至实现三的两倍。

去掉这个瓶颈

那么思路就简单了:需要两个锁 CONSUME_LOCK与PRODUCE_LOCK,CONSUME_LOCK控制消费者线程并发出队,PRODUCE_LOCK控制生产者线程并发入队;相应需要两个条件变量NOT_EMPTY与NOT_FULL,NOT_EMPTY负责控制消费者线程的状态(阻塞、运行),NOT_FULL负责控制生产者线程的状态(阻塞、运行)。以此让优化消费者与消费者(或生产者与生产者)之间是串行的;消费者与生产者之间是并行的。

public class LockConditionModel2 implements Model {

  private final Lock CONSUME_LOCK = new ReentrantLock();

  private final Condition NOT_EMPTY = CONSUME_LOCK.newCondition();

  private final Lock PRODUCE_LOCK = new ReentrantLock();

  private final Condition NOT_FULL = PRODUCE_LOCK.newCondition();

  private final Buffer<Task> buffer = new Buffer<>();

  private AtomicInteger bufLen = new AtomicInteger(0);

  private final int cap;

  private final AtomicInteger increTaskNo = new AtomicInteger(0);

  public LockConditionModel2(int cap) {

    this.cap = cap;

  }

  @Override

  public Runnable newRunnableConsumer() {

    return new ConsumerImpl();

  }

  @Override

  public Runnable newRunnableProducer() {

    return new ProducerImpl();

  }

  private class ConsumerImpl extends AbstractConsumer implements Consumer, Runnable {

    @Override

    public void consume() throws InterruptedException {

      int newBufSize = -1;

      CONSUME_LOCK.lockInterruptibly();

      try {

        while (bufLen.get() == 0) {

          System.out.println("buffer is empty...");

          NOT_EMPTY.await();

        }

        Task task = buffer.poll();

        newBufSize = bufLen.decrementAndGet();

        assert task != null;

        // 固定时间范围的消费,模拟相对稳定的服务器处理过程

        Thread.sleep(500 + (long) (Math.random() * 500));

        System.out.println("consume: " + task.no);

        if (newBufSize > 0) {

          NOT_EMPTY.signalAll();

        }

      } finally {

        CONSUME_LOCK.unlock();

      }

      if (newBufSize < cap) {

        PRODUCE_LOCK.lockInterruptibly();

        try {

          NOT_FULL.signalAll();

        } finally {

          PRODUCE_LOCK.unlock();

        }

      }

    }

  }

  private class ProducerImpl extends AbstractProducer implements Producer, Runnable {

    @Override

    public void produce() throws InterruptedException {

      // 不定期生产,模拟随机的用户请求

      Thread.sleep((long) (Math.random() * 1000));

      int newBufSize = -1;

      PRODUCE_LOCK.lockInterruptibly();

      try {

        while (bufLen.get() == cap) {

          System.out.println("buffer is full...");

          NOT_FULL.await();

        }

        Task task = new Task(increTaskNo.getAndIncrement());

        buffer.offer(task);

        newBufSize = bufLen.incrementAndGet();

        System.out.println("produce: " + task.no);

        if (newBufSize < cap) {

          NOT_FULL.signalAll();

        }

      } finally {

        PRODUCE_LOCK.unlock();

      }

      if (newBufSize > 0) {

        CONSUME_LOCK.lockInterruptibly();

        try {

          NOT_EMPTY.signalAll();

        } finally {

          CONSUME_LOCK.unlock();

        }

      }

    }

  }

  private static class Buffer<E> {

    private Node head;

    private Node tail;

    Buffer() {

      // dummy node

      head = tail = new Node(null);

    }

    public void offer(E e) {

      tail.next = new Node(e);

      tail = tail.next;

    }

    public E poll() {

      head = head.next;

      E e = head.item;

      head.item = null;

      return e;

    }

    private class Node {

      E item;

      Node next;

      Node(E item) {

        this.item = item;

      }

    }

  }

  public static void main(String[] args) {

    Model model = new LockConditionModel2(3);

    for (int i = 0; i < 2; i++) {

      new Thread(model.newRunnableConsumer()).start();

    }

    for (int i = 0; i < 5; i++) {

      new Thread(model.newRunnableProducer()).start();

    }

  }

需要注意的是,由于需要同时在UnThreadSafe的缓冲区 buffer 上进行消费与生产,我们不能使用实现二、三中使用的队列了,需要自己实现一个简单的缓冲区 Buffer。Buffer要满足以下条件:

  • 在头部出队,尾部入队

  • 在poll()方法中只操作head

  • 在offer()方法中只操作tail

还能进一步优化吗

我们已经优化掉了消费者与生产者之间的瓶颈,还能进一步优化吗?

如果可以,必然是继续优化消费者与消费者(或生产者与生产者)之间的并发性能。然而,消费者与消费者之间必须是串行的,因此,并发模型上已经没有地方可以继续优化了。

不过在具体的业务场景中,一般还能够继续优化。如:

  • 并发规模中等,可考虑使用CAS代替重入锁

  • 模型上不能优化,但一个消费行为或许可以进一步拆解、优化,从而降低消费的延迟

  • 一个队列的并发性能达到了极限,可采用“多个队列”(如分布式消息队列等)

4种实现的本质

文章开头说:这4种写法的本质相同——都是在使用或实现BlockingQueue。实现一直接使用BlockingQueue,实现四实现了简单的BlockingQueue,而实现二、三则实现了退化版的BlockingQueue(性能降低一半)。

实现一使用的BlockingQueue实现类是LinkedBlockingQueue,给出其源码阅读对照,写的不难:

public class LinkedBlockingQueue<E> extends AbstractQueue<E>

        implements BlockingQueue<E>, java.io.Serializable {

...

/** Lock held by take, poll, etc */

    private final ReentrantLock takeLock = new ReentrantLock();

    /** Wait queue for waiting takes */

    private final Condition notEmpty = takeLock.newCondition();

    /** Lock held by put, offer, etc */

    private final ReentrantLock putLock = new ReentrantLock();

    /** Wait queue for waiting puts */

    private final Condition notFull = putLock.newCondition();

...

    /**

     * Signals a waiting take. Called only from put/offer (which do not

     * otherwise ordinarily lock takeLock.)

     */

    private void signalNotEmpty() {

        final ReentrantLock takeLock = this.takeLock;

        takeLock.lock();

        try {

            notEmpty.signal();

        } finally {

            takeLock.unlock();

        }

    }

    /**

     * Signals a waiting put. Called only from take/poll.

     */

    private void signalNotFull() {

        final ReentrantLock putLock = this.putLock;

        putLock.lock();

        try {

            notFull.signal();

        } finally {

            putLock.unlock();

        }

    }

    /**

     * Links node at end of queue.

     *

     * @param node the node

     */

    private void enqueue(Node<E> node) {

        // assert putLock.isHeldByCurrentThread();

        // assert last.next == null;

        last = last.next = node;

    }

    /**

     * Removes a node from head of queue.

     *

     * @return the node

     */

    private E dequeue() {

        // assert takeLock.isHeldByCurrentThread();

        // assert head.item == null;

        Node<E> h = head;

        Node<E> first = h.next;

        h.next = h; // help GC

        head = first;

        E x = first.item;

        first.item = null;

        return x;

    }

...

    /**

     * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.

     *

     * @param capacity the capacity of this queue

     * @throws IllegalArgumentException if {@code capacity} is not greater

     *         than zero

     */

    public LinkedBlockingQueue(int capacity) {

        if (capacity <= 0) throw new IllegalArgumentException();

        this.capacity = capacity;

        last = head = new Node<E>(null);

    }

...

    /**

     * Inserts the specified element at the tail of this queue, waiting if

     * necessary for space to become available.

     *

     * @throws InterruptedException {@inheritDoc}

     * @throws NullPointerException {@inheritDoc}

     */

    public void put(E e) throws InterruptedException {

        if (e == null) throw new NullPointerException();

        // Note: convention in all put/take/etc is to preset local var

        // holding count negative to indicate failure unless set.

        int c = -1;

        Node<E> node = new Node<E>(e);

        final ReentrantLock putLock = this.putLock;

        final AtomicInteger count = this.count;

        putLock.lockInterruptibly();

        try {

            /*

             * Note that count is used in wait guard even though it is

             * not protected by lock. This works because count can

             * only decrease at this point (all other puts are shut

             * out by lock), and we (or some other waiting put) are

             * signalled if it ever changes from capacity. Similarly

             * for all other uses of count in other wait guards.

             */

            while (count.get() == capacity) {

                notFull.await();

            }

            enqueue(node);

            c = count.getAndIncrement();

            if (c + 1 < capacity)

                notFull.signal();

        } finally {

            putLock.unlock();

        }

        if (c == 0)

            signalNotEmpty();

    }

...

    public E take() throws InterruptedException {

        E x;

        int c = -1;

        final AtomicInteger count = this.count;

        final ReentrantLock takeLock = this.takeLock;

        takeLock.lockInterruptibly();

        try {

            while (count.get() == 0) {

                notEmpty.await();

            }

            x = dequeue();

            c = count.getAndDecrement();

            if (c > 1)

                notEmpty.signal();

        } finally {

            takeLock.unlock();

        }

        if (c == capacity)

            signalNotFull();

        return x;

    }

...

}

还存在非常多的写法,如信号量Semaphore,也很常见(本科操作系统教材中的生产者-消费者模型就是用信号量实现的)。不过追究过多了就好像在纠结茴香豆的写法一样,本文不继续探讨。

总结

实现一必须掌握,实现四至少要能清楚表述;实现二、三掌握一个即可。

相关文章

网友评论

    本文标题:Java 实现生产者 : 消费者模型

    本文链接:https://www.haomeiwen.com/subject/yxtosqtx.html