美文网首页
深入理解Android Binder机制

深入理解Android Binder机制

作者: Liekkas_BJ | 来源:发表于2023-06-22 21:15 被阅读0次

一.概述

1.1 概念

Binder是Android提供的一种IPC机制(进程间通信机制)。
特点:更加方便灵活
Android其他IPC机制:管道、socket
作用:Android系统基本可以看作是基于Binder机制的C/S架构,binder把系统的各部分连接在一起

1.2 ServiceManager、Client、Server之间的关系

ServiceManager:管理系统中的各种服务(Service)
三者交互关系如图:

ServiceManager、Client、Server关系图

总结:
1.一个Server进程可以注册多个Service
2.Server要先注册一些Service到ServiceManager中,所以Server是ServiceManager的客户端,ServiceManager是服务端
3.如果Client进程想使用某个Service服务,则先要到ServiceManager获取服务相关信息,所以Client是ServiceManager的客户端
4.Client根据得到的Service信息与Service所在的Server进程建立通信通路,然后就可以直接与Service直接交互了,所以Client也是Server的客户端
5.三者之间通信均是基于Binder机制

二.MediaServer

本文章以MediaServer为例,来分析Binder机制。之所以选择MediaServer作为切入点,是因为这个Server是系统诸多重要Service的栖息地,它们包括:

AudioFlinger:音频系统中的核心服务。
AudioPolicyService:音频系统中关于音频策略的重要服务。
MediaPlayerService:多媒体系统中的重要服务。
CameraService:有关摄像/照相的重要服务。

2.1 MediaServer入口函数

frameworks/av/media/mediaserver/main_mediaserver.cpp

int main(int argc __unused, char **argv __unused)
{
    signal(SIGPIPE, SIG_IGN);
    //1.获得一个ProcessState实例,单例模式
    sp<ProcessState> proc(ProcessState::self());
    //2.MediaServer作为ServiceManager的客户端,要向ServiceManager注册服务
    //调用defaultServiceManager()得到一个IServiceManager
    sp<IServiceManager> sm(defaultServiceManager());
    ALOGI("ServiceManager: %p", sm.get());
    InitializeIcuOrDie();
    //3.初始化服务
    MediaPlayerService::instantiate();
    ResourceManagerService::instantiate();
    registerExtensions();
    //4.创建一个线程池
    ProcessState::self()->startThreadPool();
    //5.将IPCThreadState加入线程池
    IPCThreadState::self()->joinThreadPool();
}

MediaServer的入口函数,主要做了5件事
1.获取当前进程的一个ProcessState对象,ProcessState在同一进程单例
2.向ServiceManager注册服务
3.初始化服务
4.创建一个线程池
5.将当前IPC线程状态加入线程池

2.2 ProcessState

每个进程只有一个ProcessState对象,它的调用方式如下:

//获取一个ProcessState实例
sp<ProcessState> proc(ProcessState::self());

下面来分析下ProcessState

2.2.1ProcessState::self()函数

frameworks/native/libs/binder/ProcessState.cpp

sp<ProcessState> ProcessState::self()
{
    Mutex::Autolock _l(gProcessMutex);
    if (gProcess != NULL) {
        return gProcess;
    }
    //创建一个ProcessState
    gProcess = new ProcessState("/dev/binder");
    return gProcess;
}

self()方法使用了单例模式,保证了每个进程只有一个ProcessState对象

1 ProcessState的构造函数

frameworks/native/libs/binder/ProcessState.cpp

ProcessState::ProcessState(const char *driver)
    : mDriverName(String8(driver))
    //打开dev/binder驱动
    , mDriverFD(open_driver(driver))
    , mVMStart(MAP_FAILED)
    , mThreadCountLock(PTHREAD_MUTEX_INITIALIZER)
    , mThreadCountDecrement(PTHREAD_COND_INITIALIZER)
    , mExecutingThreadsCount(0)
    , mMaxThreads(DEFAULT_MAX_BINDER_THREADS)
    , mStarvationStartTimeMs(0)
    , mManagesContexts(false)
    , mBinderContextCheckFunc(NULL)
    , mBinderContextUserData(NULL)
    , mThreadPoolStarted(false)
    , mThreadPoolSeq(1)
{
    if (mDriverFD >= 0) {
        // mmap the binder, providing a chunk of virtual address space to receive transactions.
        //2.mmap与binder的驱动建立映射关系
        //BINDER_VM_SIZE定义为(1*1024*1024)- (4096*2)= 1M-8K,这也是Intent传递的数据为何不能超过1M的原因,因为Intent传递数据使用到了binder机制,所以会受到BINDER_VM_SIZE的定义限制
        //binder驱动会分配一块内存来接收数据
        mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0);
        if (mVMStart == MAP_FAILED) {
            // *sigh*
            ALOGE("Using %s failed: unable to mmap transaction memory.\n", mDriverName.c_str());
            close(mDriverFD);
            mDriverFD = -1;
            mDriverName.clear();
        }
    }
    LOG_ALWAYS_FATAL_IF(mDriverFD < 0, "Binder driver could not be opened.  Terminating.");
}

2 打开binder设备

open_driver的作用就是打开/dev/binder这个设备,它是Android在内核中为完成进程间通信而专门设置的一个虚拟设备,具体实现如下所示:
frameworks/native/libs/binder/ProcessState.cpp

static int open_driver(const char *driver)
{
    int fd = open(driver, O_RDWR | O_CLOEXEC);
    if (fd >= 0) {
        int vers = 0;
        status_t result = ioctl(fd, BINDER_VERSION, &vers);
        if (result == -1) {
            ALOGE("Binder ioctl to obtain version failed: %s", strerror(errno));
            close(fd);
            fd = -1;
        }
        if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) {
          ALOGE("Binder driver protocol(%d) does not match user space protocol(%d)! ioctl() return value: %d",
                vers, BINDER_CURRENT_PROTOCOL_VERSION, result);
            close(fd);
            fd = -1;
        }
        //这个fd支持的最大线程数为DEFAULT_MAX_BINDER_THREADS=15
        size_t maxThreads = DEFAULT_MAX_BINDER_THREADS;
        result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);
        if (result == -1) {
            ALOGE("Binder ioctl to set max threads failed: %s", strerror(errno));
        }
    } else {
        ALOGW("Opening '%s' failed: %s\n", driver, strerror(errno));
    }
    return fd;
}

至此,ProcessState::self()函数就分析完毕。ProcessState::self()函数主要有两个作用
1.打开dev/binder设备,可以与内核的Binder驱动进行交互
2.对返回的fd对象使用mmap,内核分配一块儿内存,这样binder驱动就可以接收数据

2.3 defaultServiceManager()

//调用defaultServiceManager()得到一个IServiceManager
sp<IServiceManager> sm = defaultServiceManager();

defaultServiceManager实际调用的是IServiceManager的defaultServiceManager()函数,源码如下:
frameworks/native/libs/binder/IServiceManager.cpp

sp<IServiceManager> defaultServiceManager(){
    //单例模式
    if (gDefaultServiceManager != NULL) return gDefaultServiceManager;
    {
        AutoMutex _l(gDefaultServiceManagerLock);
        while (gDefaultServiceManager == NULL) {
            //创建gDefaultServiceManager
            gDefaultServiceManager = interface_cast<IServiceManager>(
                ProcessState::self()->getContextObject(NULL));
            if (gDefaultServiceManager == NULL)
                sleep(1);
        }
    }
    return gDefaultServiceManager;
}

defaultServiceManager函数调用了interface_cast函数进行对gDefaultServiceManager的赋值,最终发现,调用了ProcessState的getContextObject函数,getContextObject函数代码如下:

sp<IBinder> ProcessState::getContextObject(const sp<IBinder>& /*caller*/)
{
    return getStrongProxyForHandle(0);
}

getContextObject函数中调用了getStrongProxyForHandle(0)的函数,如下
frameworks/native/libs/binder/ProcessState.cpp

sp<IBinder> ProcessState::getStrongProxyForHandle(int32_t handle)
{
    sp<IBinder> result;

    AutoMutex _l(mLock);

    handle_entry* e = lookupHandleLocked(handle);

    if (e != NULL) {
        // We need to create a new BpBinder if there isn't currently one, OR we
        // are unable to acquire a weak reference on this current one.  See comment
        // in getWeakProxyForHandle() for more info about this.
        IBinder* b = e->binder;
        if (b == NULL || !e->refs->attemptIncWeak(this)) {
            if (handle == 0) {
                // Special case for context manager...
                // The context manager is the only object for which we create
                // a BpBinder proxy without already holding a reference.
                // Perform a dummy transaction to ensure the context manager
                // is registered before we create the first local reference
                // to it (which will occur when creating the BpBinder).
                // If a local reference is created for the BpBinder when the
                // context manager is not present, the driver will fail to
                // provide a reference to the context manager, but the
                // driver API does not return status.
                //
                // Note that this is not race-free if the context manager
                // dies while this code runs.
                //
                // TODO: add a driver API to wait for context manager, or
                // stop special casing handle 0 for context manager and add
                // a driver API to get a handle to the context manager with
                // proper reference counting.

                Parcel data;
                status_t status = IPCThreadState::self()->transact(
                        0, IBinder::PING_TRANSACTION, data, NULL, 0);
                if (status == DEAD_OBJECT)
                   return NULL;
            }
            //创建一个BpBinder,对于新创建的资源,b为空,此处handle为0
            b = BpBinder::create(handle);
            e->binder = b;
            if (b) e->refs = b->getWeakRefs();
            result = b;
        } else {
            // This little bit of nastyness is to allow us to add a primary
            // reference to the remote proxy when this team doesn't have one
            // but another team is sending the handle to us.
            result.force_set(b);
            e->refs->decWeak(this);
        }
    }
    //返回一个BpBinder
    return result;
}

2.3.1 BpBinder

BpBinder是IBinder的派生类,BpBinder的p意味着proxy,也就是用于客户端与服务端通信的代理类。
提到BpBinder就不得不提一下BBinder,它们都是IBinder的派生类,如下


IBinder家族图谱

BBinder是与BpBinder为一对的,也用于通信的类。BpBinder代表的是客户端的proxy,BBinder则代表与之交互的服务端。一个BpBinder只能和对应的BBinder进行通信,即BpBinderA只能与BBinderA进行通信,不会出现与BBinderB进行通信现象,通过handle的值来标识对应的BBinder,保障正确性。getStrongProxyForHandle方法中handle的值为0,代表的正是ServiceManager中对应的BBinder。

来看一下BpBinder的create方法
frameworks/native/libs/binder/BpBinder.cpp

BpBinder* BpBinder::create(int32_t handle) {
    int32_t trackedUid = -1;
    if (sCountByUidEnabled) {
        trackedUid = IPCThreadState::self()->getCallingUid();
        AutoMutex _l(sTrackingLock);
        uint32_t trackedValue = sTrackingMap[trackedUid];
        if (CC_UNLIKELY(trackedValue & LIMIT_REACHED_MASK)) {
            if (sBinderProxyThrottleCreate) {
                return nullptr;
            }
        } else {
            if ((trackedValue & COUNTING_VALUE_MASK) >= sBinderProxyCountHighWatermark) {
                ALOGE("Too many binder proxy objects sent to uid %d from uid %d (%d proxies held)",
                      getuid(), trackedUid, trackedValue);
                sTrackingMap[trackedUid] |= LIMIT_REACHED_MASK;
                if (sLimitCallback) sLimitCallback(trackedUid);
                if (sBinderProxyThrottleCreate) {
                    ALOGI("Throttling binder proxy creates from uid %d in uid %d until binder proxy"
                          " count drops below %d",
                          trackedUid, getuid(), sBinderProxyCountLowWatermark);
                    return nullptr;
                }
            }
        }
        sTrackingMap[trackedUid]++;
    }
    return new BpBinder(handle, trackedUid);
}

紧跟着看下BpBinder(handle, trackedUid)构造函数
frameworks/native/libs/binder/BpBinder.cpp

BpBinder::BpBinder(int32_t handle, int32_t trackedUid)
    : mHandle(handle)
    , mAlive(1)
    , mObitsSent(0)
    , mObituaries(NULL)
    , mTrackedUid(trackedUid)
{
    ALOGV("Creating BpBinder %p handle %d\n", this, mHandle);

    extendObjectLifetime(OBJECT_LIFETIME_WEAK);
    IPCThreadState::self()->incWeakHandle(handle, this);
}

这里出现了IPCThreadState::self()函数。到这里并没有发现任何与通信动作相关的操作。到此处为止,我们只是创建了一个BpBinder的对象,具体还并没有对它进行任何调用,所以我们要翻回头再去看当时接受BpBinder参数的方法,即interface_cast函数,继续跟进

frameworks/native/include/binder/IInterface.h

inline sp<INTERFACE> interface_cast(const sp<IBinder>& obj)
{
    return INTERFACE::asInterface(obj);
}

此处的INTERFACE是IServiceManager,所以此处代码相当于返回了IServiceManager.asInterface(obj),又回到了IServiceManager中去了。继续看IServiceManger的asInterface函数。注意,此处的IServiceManger为IServiceManger.h而不是IServiceManger.cpp。
frameworks/native/include/binder/IServiceManager.h

class IServiceManager : public IInterface
{
public:
    //非常重要的一个宏
    DECLARE_META_INTERFACE(ServiceManager)
    /**
     * Must match values in IServiceManager.java
     */
    /* Allows services to dump sections according to priorities. */
    static const int DUMP_FLAG_PRIORITY_CRITICAL = 1 << 0;
    static const int DUMP_FLAG_PRIORITY_HIGH = 1 << 1;
    static const int DUMP_FLAG_PRIORITY_NORMAL = 1 << 2;
    /**
     * Services are by default registered with a DEFAULT dump priority. DEFAULT priority has the
     * same priority as NORMAL priority but the services are not called with dump priority
     * arguments.
     */
    static const int DUMP_FLAG_PRIORITY_DEFAULT = 1 << 3;
    static const int DUMP_FLAG_PRIORITY_ALL = DUMP_FLAG_PRIORITY_CRITICAL |
            DUMP_FLAG_PRIORITY_HIGH | DUMP_FLAG_PRIORITY_NORMAL | DUMP_FLAG_PRIORITY_DEFAULT;
    static const int DUMP_FLAG_PROTO = 1 << 4;

    /**
     * Retrieve an existing service, blocking for a few seconds
     * if it doesn't yet exist.
     */
    virtual sp<IBinder>         getService( const String16& name) const = 0;

    /**
     * Retrieve an existing service, non-blocking.
     */
    virtual sp<IBinder>         checkService( const String16& name) const = 0;

    /**
     * Register a service.
     */
    virtual status_t addService(const String16& name, const sp<IBinder>& service,
                                bool allowIsolated = false,
                                int dumpsysFlags = DUMP_FLAG_PRIORITY_DEFAULT) = 0;

    /**
     * Return list of all existing services.
     */
    virtual Vector<String16> listServices(int dumpsysFlags = DUMP_FLAG_PRIORITY_ALL) = 0;

    enum {
        GET_SERVICE_TRANSACTION = IBinder::FIRST_CALL_TRANSACTION,
        CHECK_SERVICE_TRANSACTION,
        ADD_SERVICE_TRANSACTION,
        LIST_SERVICES_TRANSACTION,
    };
}

先看下DECLARE_META_INTERFACE宏当中是如何定义的
frameworks/native/include/binder/IInterface.h

#define DECLARE_META_INTERFACE(INTERFACE)                               \
    static const ::android::String16 descriptor;                        \
    static ::android::sp<I##INTERFACE> asInterface(                     \
            const ::android::sp<::android::IBinder>& obj);              \
    virtual const ::android::String16& getInterfaceDescriptor() const;  \
    I##INTERFACE();                                                     \
    virtual ~I##INTERFACE();  

替换、翻译过来我们得到一段这样的代码

static const ::android::String16 descriptor;    
//定义一个asInterface函数                    
static ::android::sp<IServiceManger> asInterface(                     
            const android::sp<android::IBinder>& obj)        
virtual const android::String16& getInterfaceDescriptor() const;  
//定义IServiceManger的构造方法
IServiceManger();                                                     
virtual ~ IServiceManger(); 

DECLARE_META_INTERFACE宏定义了一些方法,这些方法的实现是在IServiceManger.cpp中,查找IServiceManger.cpp发现了另外一个宏
frameworks/native/libs/binder/IServiceManager.cpp

IMPLEMENT_META_INTERFACE(ServiceManager, "android.os.IServiceManager");

继续跟进,发现IMPLEMENT_META_INTERFACE定义在了IInterface.h文件

frameworks/native/include/binder/IInterface.h

#define IMPLEMENT_META_INTERFACE(INTERFACE, NAME)                       \
    const ::android::String16 I##INTERFACE::descriptor(NAME);           \
    const ::android::String16&                                          \
            I##INTERFACE::getInterfaceDescriptor() const {              \
        return I##INTERFACE::descriptor;                                \
    }                                                                   \
    ::android::sp<I##INTERFACE> I##INTERFACE::asInterface(              \
            const ::android::sp<::android::IBinder>& obj)               \
    {                                                                   \
        ::android::sp<I##INTERFACE> intr;                               \
        if (obj != NULL) {                                              \
            intr = static_cast<I##INTERFACE*>(                          \
                obj->queryLocalInterface(                               \
                        I##INTERFACE::descriptor).get());               \
            if (intr == NULL) {                                         \
                intr = new Bp##INTERFACE(obj);                          \
            }                                                           \
        }                                                               \
        return intr;                                                    \
    }                                                                   \
    I##INTERFACE::I##INTERFACE() { }                                    \
    I##INTERFACE::~I##INTERFACE() { }                                   \

替换后得到了以下代码

    const ::android::String16 IServiceManger::descriptor("android.os.IServiceManager");           
    const android::String16&                                          
            IServiceManager::getInterfaceDescriptor() const {              
        return IServiceManager::descriptor;                                
    }                                                                   
    android::sp<IServiceManager> IServiceManager::asInterface(              
            const android::sp<android::IBinder>& obj)               
    {                                                                   
        android::sp< IServiceManager > intr;                               
        if (obj != NULL) {                                              
            intr = static_cast< IServiceManager*>(                          
                obj->queryLocalInterface(                               
                        IServiceManager::descriptor).get());               
            if (intr == NULL) {      
                //obj就是BpBinder
                //此处实际上真正返回的是一个BpServiceManager对象                                   
                intr = new BpServiceManager(obj);                          
            }                                                           
        }                                                               
        return intr;                                                    
    }                                                                   
   IServiceManager::IServiceManager() { }                                    
   IServiceManager::~IServiceManager() { }                                   

到此,我们发现inferface_cast函数最终返回了一个BpServiceManager对象,这个BpServiceManager就是将BpBinder转化成了一个IServiceManager对象,最终返回给了defaultServiceManager()函数。

这里又出现了一个BpServiceManager,既然inferface_cast方法要求返回的是一个IServiceManager,那么BpServiceManager一定是它的一个派生类,接下来介绍下IServiceManager家族

2.3.2 IServiceManager家族

IServiceManager家族图谱

由图可知,BpServiceManager与BbServiceManager不同,BbServiceManager是通过实现BBinder接口进行通信,BpServiceManager又是如何实现通信的呢?上文中创建一个BpServiceManager需要一个BpBinder参数,所以BpServiceManager是通过设置BpBinder变量,通过这个BpBinder来实现通信的。查看BpServiceManager的父接口BpInterface

frameworks/native/include/binder/IInterface.h

//定义构造方法
inline BpInterface<INTERFACE>::BpInterface(const sp<IBinder>& remote): 
BpRefBase(remote){}

BpRefBase的实现如下
frameworks/native/libs/binder/Binder.cpp

BpRefBase::BpRefBase(const sp<IBinder>& o)
   //mRemote变量最终等于new出来的BpBinder
   : mRemote(o.get()), mRefs(NULL), mState(0)
{
   extendObjectLifetime(OBJECT_LIFETIME_WEAK);
   
   if (mRemote) {
       mRemote->incStrong(this);           // Removed on first IncStrong().
       mRefs = mRemote->createWeak(this);  // Held for our entire lifetime.
   }
}

原来,是BpServiceManager的一个变量mRemote指向了BpBinder。至此,我们的魔术表演结束,回想一下defaultServiceManager函数,可以得到以下两个关键对象:
1.有一个BpBinder对象,它的handle值是0。
2.有一个BpServiceManager对象,它的mRemote值是BpBinder。

2.4 MediaPlayerService的注册

frameworks/av/media/libmediaplayerservice/MediaPlayerService.cpp

void MediaPlayerService::instantiate() {
    defaultServiceManager()->addService(
            String16("media.player"), new MediaPlayerService());
}

defaultServiceManager()函数返回的实际上是BpServiceManager,BpServiceManager定义在IServiceManager.cpp文件中,BpServiceManager的addService函数如下:
frameworks/native/libs/binder/IServiceManager.cpp

virtual status_t addService(const String16& name, const sp<IBinder>& service,
            bool allowIsolated)
    {
        Parcel data, reply;
        data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
        data.writeString16(name);
        data.writeStrongBinder(service);
        data.writeInt32(allowIsolated ? 1 : 0);
        //remote实际上是BpBinder,实际传输数据的方法
        status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
        return err == NO_ERROR ? reply.readExceptionCode() : err;
    }

至此,我们完成了业务层的数据打包,然后进入到传输层传输数据。

2.4.1 BpBinder的transact函数

frameworks/native/libs/binder/BpBinder.cpp

status_t BpBinder::transact(
    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
    // Once a binder has died, it will never come back to life.
    if (mAlive) {
        status_t status = IPCThreadState::self()->transact(
            mHandle, code, data, reply, flags);
        if (status == DEAD_OBJECT) mAlive = 0;
        return status;
    }

    return DEAD_OBJECT;
}

这里看到了一个方法IPCThreadState::self()->transact(mHandle, code, data, reply, flags),实际上传输过程是调用了该函数,我们先看下IPCThreadState::self()函数

frameworks/native/libs/binder/IPCThreadState.cpp

IPCThreadState* IPCThreadState::self()
{
    if (gHaveTLS) {//第一次进来为false
restart:
        //TLS为Thread local storage线程本地存储空间的简称,该空间每条线程都有,且不共享
        const pthread_key_t k = gTLS;
        //pthread_getspecific/pthread_setspecific可以获取/设置空间内容
        //从线程本地存储空间可以获取到IPCThreadState对象
        //如果该空间设置了IPCThreadState则直接返回
        IPCThreadState* st = (IPCThreadState*)pthread_getspecific(k);
        if (st) return st;
        //否则创建一个IPCThreadState返回
        return new IPCThreadState;
    }

    if (gShutdown) {
        ALOGW("Calling IPCThreadState::self() during shutdown is dangerous, expect a crash.\n");
        return NULL;
    }

    pthread_mutex_lock(&gTLSMutex);
    if (!gHaveTLS) {//第一次进来为false
        int key_create_value = pthread_key_create(&gTLS, threadDestructor);
        if (key_create_value != 0) {
            pthread_mutex_unlock(&gTLSMutex);
            ALOGW("IPCThreadState::self() unable to create TLS key, expect a crash: %s\n",
                    strerror(key_create_value));
            return NULL;
        }
        gHaveTLS = true;
    }
    pthread_mutex_unlock(&gTLSMutex);
    goto restart;
}

接下来看下IPCThreadState的构造函数
frameworks/native/libs/binder/IPCThreadState.cpp

IPCThreadState::IPCThreadState()
    : mProcess(ProcessState::self()),
      mStrictModePolicy(0),
      mLastTransactionBinderFlags(0)
{
    //将自己设置到本地线程的存储空间中
    pthread_setspecific(gTLS, this);
    clearCaller();
    //mIn是接收数据的,mOut是把发送的数据写入缓冲的
    //设置mIn的数据长度
    mIn.setDataCapacity(256);
    //设置mOut的数据长度
    mOut.setDataCapacity(256);
}

每个线程都有一个唯一的IPCThreadState,每个IPCThreadState都有一个mIn和mOut对象,mIn对象是用来接收来自Binder的数据,mOut是用于把从客户端传输到服务的数据,写入缓冲。

分析完IPCThreadState的self和构造函数后,接下来分析下IPCThreadState的transact方法,这个方法实际上就是BpBinder中真正传输数据的方法。
frameworks/native/libs/binder/IPCThreadState.cpp

status_t IPCThreadState::transact(int32_t handle,
                                  uint32_t code, const Parcel& data,
                                  Parcel* reply, uint32_t flags)
{
    status_t err;

    flags |= TF_ACCEPT_FDS;

    IF_LOG_TRANSACTIONS() {
        TextOutput::Bundle _b(alog);
        alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand "
            << handle << " / code " << TypeCode(code) << ": "
            << indent << data << dedent << endl;
    }

    LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),
        (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");
    //BC_XXX的标记,是从客户端传输数据到服务端,BR_XXX的标记是从服务端传输到客户端
    err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);

    if (err != NO_ERROR) {
        if (reply) reply->setError(err);
        return (mLastError = err);
    }

    if ((flags & TF_ONE_WAY) == 0) {
        #if 0
        if (code == 4) { // relayout
            ALOGI(">>>>>> CALLING transaction 4");
        } else {
            ALOGI(">>>>>> CALLING transaction %d", code);
        }
        #endif
        if (reply) {
            err = waitForResponse(reply);
        } else {
            Parcel fakeReply;
            err = waitForResponse(&fakeReply);
        }
        #if 0
        if (code == 4) { // relayout
            ALOGI("<<<<<< RETURNING transaction 4");
        } else {
            ALOGI("<<<<<< RETURNING transaction %d", code);
        }
        #endif

        IF_LOG_TRANSACTIONS() {
            TextOutput::Bundle _b(alog);
            alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand "
                << handle << ": ";
            if (reply) alog << indent << *reply << dedent << endl;
            else alog << "(none requested)" << endl;
        }
    } else {
        err = waitForResponse(NULL, NULL);
    }

    return err;
}

此段代码,简单来说就是先发送数据到服务,然后再等待服务传输数据回来的过程。

先来看一下writeTransactionData函数
frameworks/native/libs/binder/IPCThreadState.cpp

status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
    int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
{
    //要发送的数据
    binder_transaction_data tr;

    tr.target.ptr = 0; /* Don't pass uninitialized stack data to a remote process */
    tr.target.handle = handle;
    tr.code = code;
    tr.flags = binderFlags;
    tr.cookie = 0;
    tr.sender_pid = 0;
    tr.sender_euid = 0;

    const status_t err = data.errorCheck();
    if (err == NO_ERROR) {
        tr.data_size = data.ipcDataSize();
        tr.data.ptr.buffer = data.ipcData();
        tr.offsets_size = data.ipcObjectsCount()*sizeof(binder_size_t);
        tr.data.ptr.offsets = data.ipcObjects();
    } else if (statusBuffer) {
        tr.flags |= TF_STATUS_CODE;
        *statusBuffer = err;
        tr.data_size = sizeof(status_t);
        tr.data.ptr.buffer = reinterpret_cast<uintptr_t>(statusBuffer);
        tr.offsets_size = 0;
        tr.data.ptr.offsets = 0;
    } else {
        return (mLastError = err);
    }
    //将命令写入到mOut中,并不直接发送到服务
    mOut.writeInt32(cmd);
    //将要传输的数据写入到mOut中,并不直接发送到服务
    mOut.write(&tr, sizeof(tr));
    return NO_ERROR;
}

现在,已经把addService的请求信息写到了mOut中,接下来看看发送和接收数据的方法,waitForResponse

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
{
    uint32_t cmd;
    int32_t err;

    while (1) {
        if ((err=talkWithDriver()) < NO_ERROR) break;
        err = mIn.errorCheck();
        if (err < NO_ERROR) break;
        if (mIn.dataAvail() == 0) continue;

        cmd = (uint32_t)mIn.readInt32();

        IF_LOG_COMMANDS() {
            alog << "Processing waitForResponse Command: "
                << getReturnString(cmd) << endl;
        }

        switch (cmd) {
        case BR_TRANSACTION_COMPLETE:
            if (!reply && !acquireResult) goto finish;
            break;

        case BR_DEAD_REPLY:
            err = DEAD_OBJECT;
            goto finish;

        case BR_FAILED_REPLY:
            err = FAILED_TRANSACTION;
            goto finish;

        case BR_ACQUIRE_RESULT:
            {
                ALOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT");
                const int32_t result = mIn.readInt32();
                if (!acquireResult) continue;
                *acquireResult = result ? NO_ERROR : INVALID_OPERATION;
            }
            goto finish;

        case BR_REPLY:
            {
                binder_transaction_data tr;
                err = mIn.read(&tr, sizeof(tr));
                ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
                if (err != NO_ERROR) goto finish;

                if (reply) {
                    if ((tr.flags & TF_STATUS_CODE) == 0) {
                        reply->ipcSetDataReference(
                            reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                            tr.data_size,
                            reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                            tr.offsets_size/sizeof(binder_size_t),
                            freeBuffer, this);
                    } else {
                        err = *reinterpret_cast<const status_t*>(tr.data.ptr.buffer);
                        freeBuffer(NULL,
                            reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                            tr.data_size,
                            reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                            tr.offsets_size/sizeof(binder_size_t), this);
                    }
                } else {
                    freeBuffer(NULL,
                        reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                        tr.data_size,
                        reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                        tr.offsets_size/sizeof(binder_size_t), this);
                    continue;
                }
            }
            goto finish;

        default:
            err = executeCommand(cmd);
            if (err != NO_ERROR) goto finish;
            break;
        }
    }

finish:
    if (err != NO_ERROR) {
        if (acquireResult) *acquireResult = err;
        if (reply) reply->setError(err);
        mLastError = err;
    }

    return err;
}

先看下其中的talkWithDriver函数

 status_t IPCThreadState::talkWithDriver(bool doReceive)
{
    if (mProcess->mDriverFD <= 0) {
        return -EBADF;
    }

    binder_write_read bwr;

    // Is the read buffer empty?
    const bool needRead = mIn.dataPosition() >= mIn.dataSize();

    // We don't want to write anything if we are still reading
    // from data left in the input buffer and the caller
    // has requested to read the next data.
    const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;

    bwr.write_size = outAvail;
    bwr.write_buffer = (uintptr_t)mOut.data();

    // This is what we'll read.
    if (doReceive && needRead) {
        //接收数据缓冲区的填充,如果收到服务的数据,直接写在mIn里
        bwr.read_size = mIn.dataCapacity();
        bwr.read_buffer = (uintptr_t)mIn.data();
    } else {
        bwr.read_size = 0;
        bwr.read_buffer = 0;
    }

    IF_LOG_COMMANDS() {
        TextOutput::Bundle _b(alog);
        if (outAvail != 0) {
            alog << "Sending commands to driver: " << indent;
            const void* cmds = (const void*)bwr.write_buffer;
            const void* end = ((const uint8_t*)cmds)+bwr.write_size;
            alog << HexDump(cmds, bwr.write_size) << endl;
            while (cmds < end) cmds = printCommand(alog, cmds);
            alog << dedent;
        }
        alog << "Size of receive buffer: " << bwr.read_size
            << ", needRead: " << needRead << ", doReceive: " << doReceive << endl;
    }

    // Return immediately if there is nothing to do.
    if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;

    bwr.write_consumed = 0;
    bwr.read_consumed = 0;
    status_t err;
    do {
        IF_LOG_COMMANDS() {
            alog << "About to read/write, write size = " << mOut.dataSize() << endl;
        }
#if defined(__ANDROID__)
        //用于与服务端传输数据的方法,ioctl
        if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
            err = NO_ERROR;
        else
            err = -errno;
#else
        err = INVALID_OPERATION;
#endif
        if (mProcess->mDriverFD <= 0) {
            err = -EBADF;
        }
        IF_LOG_COMMANDS() {
            alog << "Finished read/write, write size = " << mOut.dataSize() << endl;
        }
    } while (err == -EINTR);

    IF_LOG_COMMANDS() {
        alog << "Our err: " << (void*)(intptr_t)err << ", write consumed: "
            << bwr.write_consumed << " (of " << mOut.dataSize()
                        << "), read consumed: " << bwr.read_consumed << endl;
    }

    if (err >= NO_ERROR) {
        if (bwr.write_consumed > 0) {
            if (bwr.write_consumed < mOut.dataSize())
                mOut.remove(0, bwr.write_consumed);
            else {
                mOut.setDataSize(0);
                processPostWriteDerefs();
            }
        }
        if (bwr.read_consumed > 0) {
            mIn.setDataSize(bwr.read_consumed);
            mIn.setDataPosition(0);
        }
        IF_LOG_COMMANDS() {
            TextOutput::Bundle _b(alog);
            alog << "Remaining data size: " << mOut.dataSize() << endl;
            alog << "Received commands from driver: " << indent;
            const void* cmds = mIn.data();
            const void* end = mIn.data() + mIn.dataSize();
            alog << HexDump(cmds, mIn.dataSize()) << endl;
            while (cmds < end) cmds = printReturnCommand(alog, cmds);
            alog << dedent;
        }
        return NO_ERROR;
    }

    return err;
}

talkWithDriver完成了把注册信息传输到服务,并接收服务返回到信息写入到mIn中的过程,接下来再来看下如何处理服务返回的信息,处理方法就是executeCommand(cmd)。我们看下代码

status_t IPCThreadState::executeCommand(int32_t cmd)
{
    BBinder* obj;
    RefBase::weakref_type* refs;
    status_t result = NO_ERROR;

    switch ((uint32_t)cmd) {
    case BR_ERROR:
        result = mIn.readInt32();
        break;

    case BR_OK:
        break;

    case BR_ACQUIRE:
        refs = (RefBase::weakref_type*)mIn.readPointer();
        obj = (BBinder*)mIn.readPointer();
        ALOG_ASSERT(refs->refBase() == obj,
                   "BR_ACQUIRE: object %p does not match cookie %p (expected %p)",
                   refs, obj, refs->refBase());
        obj->incStrong(mProcess.get());
        IF_LOG_REMOTEREFS() {
            LOG_REMOTEREFS("BR_ACQUIRE from driver on %p", obj);
            obj->printRefs();
        }
        mOut.writeInt32(BC_ACQUIRE_DONE);
        mOut.writePointer((uintptr_t)refs);
        mOut.writePointer((uintptr_t)obj);
        break;

    case BR_RELEASE:
        refs = (RefBase::weakref_type*)mIn.readPointer();
        obj = (BBinder*)mIn.readPointer();
        ALOG_ASSERT(refs->refBase() == obj,
                   "BR_RELEASE: object %p does not match cookie %p (expected %p)",
                   refs, obj, refs->refBase());
        IF_LOG_REMOTEREFS() {
            LOG_REMOTEREFS("BR_RELEASE from driver on %p", obj);
            obj->printRefs();
        }
        mPendingStrongDerefs.push(obj);
        break;

    case BR_INCREFS:
        refs = (RefBase::weakref_type*)mIn.readPointer();
        obj = (BBinder*)mIn.readPointer();
        refs->incWeak(mProcess.get());
        mOut.writeInt32(BC_INCREFS_DONE);
        mOut.writePointer((uintptr_t)refs);
        mOut.writePointer((uintptr_t)obj);
        break;

    case BR_DECREFS:
        refs = (RefBase::weakref_type*)mIn.readPointer();
        obj = (BBinder*)mIn.readPointer();
        // NOTE: This assertion is not valid, because the object may no
        // longer exist (thus the (BBinder*)cast above resulting in a different
        // memory address).
        //ALOG_ASSERT(refs->refBase() == obj,
        //           "BR_DECREFS: object %p does not match cookie %p (expected %p)",
        //           refs, obj, refs->refBase());
        mPendingWeakDerefs.push(refs);
        break;

    case BR_ATTEMPT_ACQUIRE:
        refs = (RefBase::weakref_type*)mIn.readPointer();
        obj = (BBinder*)mIn.readPointer();

        {
            const bool success = refs->attemptIncStrong(mProcess.get());
            ALOG_ASSERT(success && refs->refBase() == obj,
                       "BR_ATTEMPT_ACQUIRE: object %p does not match cookie %p (expected %p)",
                       refs, obj, refs->refBase());

            mOut.writeInt32(BC_ACQUIRE_RESULT);
            mOut.writeInt32((int32_t)success);
        }
        break;

    case BR_TRANSACTION:
        {
            binder_transaction_data tr;
            result = mIn.read(&tr, sizeof(tr));
            ALOG_ASSERT(result == NO_ERROR,
                "Not enough command data for brTRANSACTION");
            if (result != NO_ERROR) break;

            Parcel buffer;
            buffer.ipcSetDataReference(
                reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                tr.data_size,
                reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                tr.offsets_size/sizeof(binder_size_t), freeBuffer, this);

            const pid_t origPid = mCallingPid;
            const uid_t origUid = mCallingUid;
            const int32_t origStrictModePolicy = mStrictModePolicy;
            const int32_t origTransactionBinderFlags = mLastTransactionBinderFlags;

            mCallingPid = tr.sender_pid;
            mCallingUid = tr.sender_euid;
            mLastTransactionBinderFlags = tr.flags;

            //ALOGI(">>>> TRANSACT from pid %d uid %d\n", mCallingPid, mCallingUid);

            Parcel reply;
            status_t error;
            IF_LOG_TRANSACTIONS() {
                TextOutput::Bundle _b(alog);
                alog << "BR_TRANSACTION thr " << (void*)pthread_self()
                    << " / obj " << tr.target.ptr << " / code "
                    << TypeCode(tr.code) << ": " << indent << buffer
                    << dedent << endl
                    << "Data addr = "
                    << reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer)
                    << ", offsets addr="
                    << reinterpret_cast<const size_t*>(tr.data.ptr.offsets) << endl;
            }
   
            if (tr.target.ptr) {
                // We only have a weak reference on the target object, so we must first try to
                // safely acquire a strong reference before doing anything else with it.
                if (reinterpret_cast<RefBase::weakref_type*>(
                        tr.target.ptr)->attemptIncStrong(this)) {
                    error = reinterpret_cast<BBinder*>(tr.cookie)->transact(tr.code, buffer,
                            &reply, tr.flags);
                    reinterpret_cast<BBinder*>(tr.cookie)->decStrong(this);
                } else {
                    error = UNKNOWN_TRANSACTION;
                }

            } else {
                error = the_context_object->transact(tr.code, buffer, &reply, tr.flags);
            }

            //ALOGI("<<<< TRANSACT from pid %d restore pid %d uid %d\n",
            //     mCallingPid, origPid, origUid);

            if ((tr.flags & TF_ONE_WAY) == 0) {
                LOG_ONEWAY("Sending reply to %d!", mCallingPid);
                if (error < NO_ERROR) reply.setError(error);
                sendReply(reply, 0);
            } else {
                LOG_ONEWAY("NOT sending reply to %d!", mCallingPid);
            }

            mCallingPid = origPid;
            mCallingUid = origUid;
            mStrictModePolicy = origStrictModePolicy;
            mLastTransactionBinderFlags = origTransactionBinderFlags;

            IF_LOG_TRANSACTIONS() {
                TextOutput::Bundle _b(alog);
                alog << "BC_REPLY thr " << (void*)pthread_self() << " / obj "
                    << tr.target.ptr << ": " << indent << reply << dedent << endl;
            }

        }
        break;

    case BR_DEAD_BINDER:
        {
            BpBinder *proxy = (BpBinder*)mIn.readPointer();
            proxy->sendObituary();
            mOut.writeInt32(BC_DEAD_BINDER_DONE);
            mOut.writePointer((uintptr_t)proxy);
        } break;

    case BR_CLEAR_DEATH_NOTIFICATION_DONE:
        {
            BpBinder *proxy = (BpBinder*)mIn.readPointer();
            proxy->getWeakRefs()->decWeak(proxy);
        } break;

    case BR_FINISHED:
        result = TIMED_OUT;
        break;

    case BR_NOOP:
        break;

    case BR_SPAWN_LOOPER:
        //这里将收到来自驱动的指示,创建一个线程,用于和binder通信
        mProcess->spawnPooledThread(false);
        break;

    default:
        ALOGE("*** BAD COMMAND %d received from Binder driver\n", cmd);
        result = UNKNOWN_ERROR;
        break;
    }

    if (result != NO_ERROR) {
        mLastError = result;
    }

    return result;
}

2.5 startThreadPool和joinThreadPool

frameworks/av/media/mediaserver/main_mediaserver.cpp

ProcessState::self()->startThreadPool();
IPCThreadState::self()->joinThreadPool();

startThreadPool()代码如下,
frameworks/native/libs/binder/ProcessState.cpp

void ProcessState::startThreadPool()
{
    AutoMutex _l(mLock);
    //如果没有startPool则调用
    if (!mThreadPoolStarted) {
        mThreadPoolStarted = true;
        spawnPooledThread(true);
    }
}

再跟进看下spawnPooledThread
frameworks/native/libs/binder/ProcessState.cpp

void ProcessState::spawnPooledThread(bool isMain)
{
    if (mThreadPoolStarted) {
        String8 name = makeBinderThreadName();
        ALOGV("Spawning new pooled thread, name=%s\n", name.string());
        sp<Thread> t = new PoolThread(isMain);
        t->run(name.string());
    }
}

继续跟进PoolThread

class PoolThread : public Thread
{
public:
    explicit PoolThread(bool isMain)
        : mIsMain(isMain)
    {
    }
    
protected:
    virtual bool threadLoop()
    {
        IPCThreadState::self()->joinThreadPool(mIsMain);
        return false;
    }
    
    const bool mIsMain;
};

PoolThread是定义在ProcessState.cpp中的定义的Thread的子类,从代码上来看,最终调用的还是joinThreadPool,再看下joinThreadPool函数

void IPCThreadState::joinThreadPool(bool isMain)
{
    LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n", (void*)pthread_self(), getpid());

    mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);

    status_t result;
    do {
        processPendingDerefs();
        // now get the next command to be processed, waiting if necessary
        result = getAndExecuteCommand();

        if (result < NO_ERROR && result != TIMED_OUT && result != -ECONNREFUSED && result != -EBADF) {
            ALOGE("getAndExecuteCommand(fd=%d) returned unexpected error %d, aborting",
                  mProcess->mDriverFD, result);
            abort();
        }

        // Let this thread exit the thread pool if it is no longer
        // needed and it is not the main process thread.
        if(result == TIMED_OUT && !isMain) {
            break;
        }
    } while (result != -ECONNREFUSED && result != -EBADF);

    LOG_THREADPOOL("**** THREAD %p (PID %d) IS LEAVING THE THREAD POOL err=%d\n",
        (void*)pthread_self(), getpid(), result);

    mOut.writeInt32(BC_EXIT_LOOPER);
    talkWithDriver(false);
}

至此,我们发现一个有两个线程在与Binder通信,一个是通过ProcessState::self()->startThreadPool()函数,开启的一个子线程进行通信,一个是通过IPCThreadState::self()->joinThreadPool()函数,主线程进行通信。

三.ServiceManager

3.1 ServiceManager原理

defaultServiceManager返回的是一个BpServiceManager,通过它可以把命令请求发送给handle值为0的目的端。按照IServiceManager“家谱”来看,无论如何也应该有一个类从BnServiceManager派生出来并处理这些来自远方的请求吧?很可惜,源码中竟然没有这样一个类存在!但确实又有这么一个程序完成了BnServiceManager未尽的工作,这个程序就是ServiceManager,它的代码在Service_manager.c中。

3.1.1 ServiceManager入口函数

ServiceManager的入口函数如下:
frameworks/native/cmds/servicemanager/service_manager.c

int main(int argc, char** argv)
{
    struct binder_state *bs;
    union selinux_callback cb;
    char *driver;

    if (argc > 1) {
        driver = argv[1];
    } else {
        driver = "/dev/binder";
    }
    //1.打开binder设备
    bs = binder_open(driver, 128*1024);
    if (!bs) {
#ifdef VENDORSERVICEMANAGER
        ALOGW("failed to open binder driver %s\n", driver);
        while (true) {
            sleep(UINT_MAX);
        }
#else
        ALOGE("failed to open binder driver %s\n", driver);
#endif
        return -1;
    }
    //2.成为大管家
    if (binder_become_context_manager(bs)) {
        ALOGE("cannot become context manager (%s)\n", strerror(errno));
        return -1;
    }

    cb.func_audit = audit_callback;
    selinux_set_callback(SELINUX_CB_AUDIT, cb);
    cb.func_log = selinux_log_callback;
    selinux_set_callback(SELINUX_CB_LOG, cb);

#ifdef VENDORSERVICEMANAGER
    sehandle = selinux_android_vendor_service_context_handle();
#else
    sehandle = selinux_android_service_context_handle();
#endif
    selinux_status_open(true);

    if (sehandle == NULL) {
        ALOGE("SELinux: Failed to acquire sehandle. Aborting.\n");
        abort();
    }

    if (getcon(&service_manager_context) != 0) {
        ALOGE("SELinux: Failed to acquire service_manager context. Aborting.\n");
        abort();
    }

    //循环处理来自client的请求
    binder_loop(bs, svcmgr_handler);

    return 0;
}

3.12 打开binder设备

binder_open代码如下
frameworks/native/cmds/servicemanager/binder.c

struct binder_state *binder_open(const char* driver, size_t mapsize)
{
    struct binder_state *bs;
    struct binder_version vers;

    bs = malloc(sizeof(*bs));
    if (!bs) {
        errno = ENOMEM;
        return NULL;
    }
    //1.打开设备
    bs->fd = open(driver, O_RDWR | O_CLOEXEC);
    if (bs->fd < 0) {
        fprintf(stderr,"binder: cannot open %s (%s)\n",
                driver, strerror(errno));
        goto fail_open;
    }

    if ((ioctl(bs->fd, BINDER_VERSION, &vers) == -1) ||
        (vers.protocol_version != BINDER_CURRENT_PROTOCOL_VERSION)) {
        fprintf(stderr,
                "binder: kernel driver version (%d) differs from user space version (%d)\n",
                vers.protocol_version, BINDER_CURRENT_PROTOCOL_VERSION);
        goto fail_open;
    }
    //2.内存映射
    bs->mapsize = mapsize;
    bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0);
    if (bs->mapped == MAP_FAILED) {
        fprintf(stderr,"binder: cannot map device (%s)\n",
                strerror(errno));
        goto fail_map;
    }

    return bs;

fail_map:
    close(bs->fd);
fail_open:
    free(bs);
    return NULL;
}

3.1.3 成为大管家

frameworks/native/cmds/servicemanager/binder.c

int binder_become_context_manager(struct binder_state *bs)
{
    return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
}

3.1.4 binder_loop

frameworks/native/cmds/servicemanager/binder.c


/*
  binder_handler func参数是一个函数指针,这些请求最终调用binder_handler处理
*/
void binder_loop(struct binder_state *bs, binder_handler func)
{
    int res;
    struct binder_write_read bwr;
    uint32_t readbuf[32];

    bwr.write_size = 0;
    bwr.write_consumed = 0;
    bwr.write_buffer = 0;

    readbuf[0] = BC_ENTER_LOOPER;
    binder_write(bs, readbuf, sizeof(uint32_t));

    for (;;) {
        bwr.read_size = sizeof(readbuf);
        bwr.read_consumed = 0;
        bwr.read_buffer = (uintptr_t) readbuf;

        res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);

        if (res < 0) {
            ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
            break;
        }
       //接收请求,并解析,最终交给binder_handler函数类型的func处理
        res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);
        if (res == 0) {
            ALOGE("binder_loop: unexpected reply?!\n");
            break;
        }
        if (res < 0) {
            ALOGE("binder_loop: io error %d %s\n", res, strerror(errno));
            break;
        }
    }
}

3.1.5 集中处理

frameworks/native/cmds/servicemanager/service_manager.c

int svcmgr_handler(struct binder_state *bs,
                   struct binder_transaction_data *txn,
                   struct binder_io *msg,
                   struct binder_io *reply)
{
    struct svcinfo *si;
    uint16_t *s;
    size_t len;
    uint32_t handle;
    uint32_t strict_policy;
    int allow_isolated;
    uint32_t dumpsys_priority;

    //ALOGI("target=%p code=%d pid=%d uid=%d\n",
    //      (void*) txn->target.ptr, txn->code, txn->sender_pid, txn->sender_euid);

    if (txn->target.ptr != BINDER_SERVICE_MANAGER)
        return -1;

    if (txn->code == PING_TRANSACTION)
        return 0;

    // Equivalent to Parcel::enforceInterface(), reading the RPC
    // header with the strict mode policy mask and the interface name.
    // Note that we ignore the strict_policy and don't propagate it
    // further (since we do no outbound RPCs anyway).
    strict_policy = bio_get_uint32(msg);
    s = bio_get_string16(msg, &len);
    if (s == NULL) {
        return -1;
    }

    if ((len != (sizeof(svcmgr_id) / 2)) ||
        memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {
        fprintf(stderr,"invalid id %s\n", str8(s, len));
        return -1;
    }

    if (sehandle && selinux_status_updated() > 0) {
#ifdef VENDORSERVICEMANAGER
        struct selabel_handle *tmp_sehandle = selinux_android_vendor_service_context_handle();
#else
        struct selabel_handle *tmp_sehandle = selinux_android_service_context_handle();
#endif
        if (tmp_sehandle) {
            selabel_close(sehandle);
            sehandle = tmp_sehandle;
        }
    }

    switch(txn->code) {
    //获取服务
    case SVC_MGR_GET_SERVICE:
    case SVC_MGR_CHECK_SERVICE:
        //s表示服务名
        s = bio_get_string16(msg, &len);
        if (s == NULL) {
            return -1;
        }
        handle = do_find_service(s, len, txn->sender_euid, txn->sender_pid);
        if (!handle)
            break;
        bio_put_ref(reply, handle);
        return 0;
    //注册服务
    case SVC_MGR_ADD_SERVICE:
        s = bio_get_string16(msg, &len);
        if (s == NULL) {
            return -1;
        }
        handle = bio_get_ref(msg);
        allow_isolated = bio_get_uint32(msg) ? 1 : 0;
        dumpsys_priority = bio_get_uint32(msg);
        if (do_add_service(bs, s, len, handle, txn->sender_euid, allow_isolated, dumpsys_priority,
                           txn->sender_pid))
            return -1;
        break;
    //获取所有已注册的服务的名字
    case SVC_MGR_LIST_SERVICES: {
        uint32_t n = bio_get_uint32(msg);
        uint32_t req_dumpsys_priority = bio_get_uint32(msg);

        if (!svc_can_list(txn->sender_pid, txn->sender_euid)) {
            ALOGE("list_service() uid=%d - PERMISSION DENIED\n",
                    txn->sender_euid);
            return -1;
        }
        si = svclist;
        // walk through the list of services n times skipping services that
        // do not support the requested priority
        while (si) {
            if (si->dumpsys_priority & req_dumpsys_priority) {
                if (n == 0) break;
                n--;
            }
            si = si->next;
        }
        if (si) {
            bio_put_string16(reply, si->name);
            return 0;
        }
        return -1;
    }
    default:
        ALOGE("unknown code %d\n", txn->code);
        return -1;
    }

    bio_put_uint32(reply, 0);
    return 0;
}

3.2 服务的注册

svcmgr_handler中switch/case语句块中,就是ServiceManager处理来自所有客户端的请求的代码块,其中SVC_MGR_ADD_SERVICE分支表示的就是注册服务的内容。代码块中do_add_service就是真正处理注册服务的逻辑。
frameworks/native/cmds/servicemanager/service_manager.c

int do_add_service(struct binder_state *bs, const uint16_t *s, size_t len, uint32_t handle,
                   uid_t uid, int allow_isolated, uint32_t dumpsys_priority, pid_t spid) {
    struct svcinfo *si;

    //ALOGI("add_service('%s',%x,%s) uid=%d\n", str8(s, len), handle,
    //        allow_isolated ? "allow_isolated" : "!allow_isolated", uid);

    if (!handle || (len == 0) || (len > 127))
        return -1;
    //判断是否可以注册
    if (!svc_can_register(s, len, spid, uid)) {
        ALOGE("add_service('%s',%x) uid=%d - PERMISSION DENIED\n",
             str8(s, len), handle, uid);
        return -1;
    }

    si = find_svc(s, len);
    if (si) {
        if (si->handle) {
            ALOGE("add_service('%s',%x) uid=%d - ALREADY REGISTERED, OVERRIDE\n",
                 str8(s, len), handle, uid);
            svcinfo_death(bs, si);
        }
        si->handle = handle;
    } else {
        si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t));
        if (!si) {
            ALOGE("add_service('%s',%x) uid=%d - OUT OF MEMORY\n",
                 str8(s, len), handle, uid);
            return -1;
        }
        si->handle = handle;
        si->len = len;
        memcpy(si->name, s, (len + 1) * sizeof(uint16_t));
        si->name[len] = '\0';
        si->death.func = (void*) svcinfo_death;
        si->death.ptr = si;
        si->allow_isolated = allow_isolated;
        si->dumpsys_priority = dumpsys_priority;
        si->next = svclist;
        svclist = si;
    }

    binder_acquire(bs, handle);
    binder_link_to_death(bs, handle, &si->death);
    return 0;
}

3.2.1 不是所有服务都可以注册

do_add_service函数中的svc_can_register函数是用来判断这个注册服务的请求是否可以注册。代码如下:

static int svc_can_register(const uint16_t *name, size_t name_len, pid_t spid, uid_t uid)
{
    const char *perm = "add";
    //不允许app去注册
    if (multiuser_get_app_id(uid) >= AID_APP) {
        return 0; /* Don't allow apps to register services */
    }

    return check_mac_perms_from_lookup(spid, uid, perm, str8(name, name_len)) ? 1 : 0;
}

四.MediaPlayerService和它的Client

4.1 查询ServiceManager

一个Client想要得到某个Service的信息,就必须先和ServiceManager打交道,通过调用getService函数来获取对应Service的信息。以IMediaDeathNotifier.cpp中的getMediaPlayerService()为例,它的代码如下所示:
frameworks/av/media/libmedia/IMediaDeathNotifier.cpp

IMediaDeathNotifier::getMediaPlayerService()
{
    ALOGV("getMediaPlayerService");
    Mutex::Autolock _l(sServiceLock);
    if (sMediaPlayerService == 0) {
        //此处就是与ServiceManager打交道,获取一个BpServiceManager
        sp<IServiceManager> sm = defaultServiceManager();
        sp<IBinder> binder;
        do {
            //通过名字,查询服务,获取到一个BpBinder
            binder = sm->getService(String16("media.player"));
            if (binder != 0) {
                break;
            }
            ALOGW("Media player service not published, waiting...");
            //如果还没有注册,等待0.5s
            usleep(500000); // 0.5 s
        } while (true);

        if (sDeathNotifier == NULL) {
            sDeathNotifier = new DeathNotifier();
        }
        binder->linkToDeath(sDeathNotifier);
        //还是通过interface_cast函数,获取到一个BpMediaPlayerService
        sMediaPlayerService = interface_cast<IMediaPlayerService>(binder);
    }
    ALOGE_IF(sMediaPlayerService == 0, "no media player service!?");
    return sMediaPlayerService;
}

这段代码与之前的服务注册几乎流程差不多,只不过之前的是注册服务,最终调用的是addService,此处是getService。这段代码主要做了三件事
1.调用defaultServiceManager(),获取一个BpServiceManager对象,也就是ServiceManager。
2.通过ServiceManager调用的getService方法,通过名字获取到一个BpBinder。
3.再通过interface_cast函数,通过内部的宏获取到一个BpMediaPlayerService,返回。

最终我们的到了一个MediaPlayerService,我们可以通过它来调用MediaPlayerService的服务方法,例如createMediaRecorder和createMetadataRetriever等

4.2 服务与Client通信

MediaPlayerService驻留在MediaServer进程中,这个进程有两个线程在talkWithDriver。假设其中有一个线程收到了请求信息,它最终会通过executeCommand调用来处理这个请求,实现代码如下所示:

status_t IPCThreadState::executeCommand(int32_t cmd)
{
    BBinder* obj;
    RefBase::weakref_type* refs;
    status_t result = NO_ERROR;

    switch ((uint32_t)cmd) {
    case BR_ERROR:
        result = mIn.readInt32();
        break;

    case BR_OK:
        break;

    case BR_ACQUIRE:
        refs = (RefBase::weakref_type*)mIn.readPointer();
        obj = (BBinder*)mIn.readPointer();
        ALOG_ASSERT(refs->refBase() == obj,
                   "BR_ACQUIRE: object %p does not match cookie %p (expected %p)",
                   refs, obj, refs->refBase());
        obj->incStrong(mProcess.get());
        IF_LOG_REMOTEREFS() {
            LOG_REMOTEREFS("BR_ACQUIRE from driver on %p", obj);
            obj->printRefs();
        }
        mOut.writeInt32(BC_ACQUIRE_DONE);
        mOut.writePointer((uintptr_t)refs);
        mOut.writePointer((uintptr_t)obj);
        break;

    case BR_RELEASE:
        refs = (RefBase::weakref_type*)mIn.readPointer();
        obj = (BBinder*)mIn.readPointer();
        ALOG_ASSERT(refs->refBase() == obj,
                   "BR_RELEASE: object %p does not match cookie %p (expected %p)",
                   refs, obj, refs->refBase());
        IF_LOG_REMOTEREFS() {
            LOG_REMOTEREFS("BR_RELEASE from driver on %p", obj);
            obj->printRefs();
        }
        mPendingStrongDerefs.push(obj);
        break;

    case BR_INCREFS:
        refs = (RefBase::weakref_type*)mIn.readPointer();
        obj = (BBinder*)mIn.readPointer();
        refs->incWeak(mProcess.get());
        mOut.writeInt32(BC_INCREFS_DONE);
        mOut.writePointer((uintptr_t)refs);
        mOut.writePointer((uintptr_t)obj);
        break;

    case BR_DECREFS:
        refs = (RefBase::weakref_type*)mIn.readPointer();
        obj = (BBinder*)mIn.readPointer();
        // NOTE: This assertion is not valid, because the object may no
        // longer exist (thus the (BBinder*)cast above resulting in a different
        // memory address).
        //ALOG_ASSERT(refs->refBase() == obj,
        //           "BR_DECREFS: object %p does not match cookie %p (expected %p)",
        //           refs, obj, refs->refBase());
        mPendingWeakDerefs.push(refs);
        break;

    case BR_ATTEMPT_ACQUIRE:
        refs = (RefBase::weakref_type*)mIn.readPointer();
        obj = (BBinder*)mIn.readPointer();

        {
            const bool success = refs->attemptIncStrong(mProcess.get());
            ALOG_ASSERT(success && refs->refBase() == obj,
                       "BR_ATTEMPT_ACQUIRE: object %p does not match cookie %p (expected %p)",
                       refs, obj, refs->refBase());

            mOut.writeInt32(BC_ACQUIRE_RESULT);
            mOut.writeInt32((int32_t)success);
        }
        break;

    case BR_TRANSACTION:
        {
            binder_transaction_data tr;
            result = mIn.read(&tr, sizeof(tr));
            ALOG_ASSERT(result == NO_ERROR,
                "Not enough command data for brTRANSACTION");
            if (result != NO_ERROR) break;

            Parcel buffer;
            buffer.ipcSetDataReference(
                reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                tr.data_size,
                reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                tr.offsets_size/sizeof(binder_size_t), freeBuffer, this);

            const pid_t origPid = mCallingPid;
            const uid_t origUid = mCallingUid;
            const int32_t origStrictModePolicy = mStrictModePolicy;
            const int32_t origTransactionBinderFlags = mLastTransactionBinderFlags;

            mCallingPid = tr.sender_pid;
            mCallingUid = tr.sender_euid;
            mLastTransactionBinderFlags = tr.flags;

            //ALOGI(">>>> TRANSACT from pid %d uid %d\n", mCallingPid, mCallingUid);

            Parcel reply;
            status_t error;
            IF_LOG_TRANSACTIONS() {
                TextOutput::Bundle _b(alog);
                alog << "BR_TRANSACTION thr " << (void*)pthread_self()
                    << " / obj " << tr.target.ptr << " / code "
                    << TypeCode(tr.code) << ": " << indent << buffer
                    << dedent << endl
                    << "Data addr = "
                    << reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer)
                    << ", offsets addr="
                    << reinterpret_cast<const size_t*>(tr.data.ptr.offsets) << endl;
            }
            if (tr.target.ptr) {
                // We only have a weak reference on the target object, so we must first try to
                // safely acquire a strong reference before doing anything else with it.
                if (reinterpret_cast<RefBase::weakref_type*>(
                        tr.target.ptr)->attemptIncStrong(this)) {
                //调用了BBinder的transact返回了信息
                    error = reinterpret_cast<BBinder*>(tr.cookie)->transact(tr.code, buffer,
                            &reply, tr.flags);
                    reinterpret_cast<BBinder*>(tr.cookie)->decStrong(this);
                } else {
                    error = UNKNOWN_TRANSACTION;
                }

            } else {
                error = the_context_object->transact(tr.code, buffer, &reply, tr.flags);
            }

            //ALOGI("<<<< TRANSACT from pid %d restore pid %d uid %d\n",
            //     mCallingPid, origPid, origUid);

            if ((tr.flags & TF_ONE_WAY) == 0) {
                LOG_ONEWAY("Sending reply to %d!", mCallingPid);
                if (error < NO_ERROR) reply.setError(error);
                sendReply(reply, 0);
            } else {
                LOG_ONEWAY("NOT sending reply to %d!", mCallingPid);
            }

            mCallingPid = origPid;
            mCallingUid = origUid;
            mStrictModePolicy = origStrictModePolicy;
            mLastTransactionBinderFlags = origTransactionBinderFlags;

            IF_LOG_TRANSACTIONS() {
                TextOutput::Bundle _b(alog);
                alog << "BC_REPLY thr " << (void*)pthread_self() << " / obj "
                    << tr.target.ptr << ": " << indent << reply << dedent << endl;
            }

        }
        break;

    case BR_DEAD_BINDER:
        {
            BpBinder *proxy = (BpBinder*)mIn.readPointer();
            proxy->sendObituary();
            mOut.writeInt32(BC_DEAD_BINDER_DONE);
            mOut.writePointer((uintptr_t)proxy);
        } break;

    case BR_CLEAR_DEATH_NOTIFICATION_DONE:
        {
            BpBinder *proxy = (BpBinder*)mIn.readPointer();
            proxy->getWeakRefs()->decWeak(proxy);
        } break;

    case BR_FINISHED:
        result = TIMED_OUT;
        break;

    case BR_NOOP:
        break;

    case BR_SPAWN_LOOPER:
        mProcess->spawnPooledThread(false);
        break;

    default:
        ALOGE("*** BAD COMMAND %d received from Binder driver\n", cmd);
        result = UNKNOWN_ERROR;
        break;
    }

    if (result != NO_ERROR) {
        mLastError = result;
    }

    return result;
}

BBinder和业务层有什么关系?我们以MediaPlayerService为例,来梳理一下其派生关系,如图所示:


MediaPlayerService家族谱

BnMediaPlayerService实现了onTransact函数,它将根据消息码调用对应的业务逻辑函数,这些业务逻辑函数由MediaPlayerService来实现。这一路的历程,如下面的代码所示:
frameworks/native/libs/binder/Binder.cpp

status_t BBinder::transact(
    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
    data.setDataPosition(0);

    status_t err = NO_ERROR;
    switch (code) {
        case PING_TRANSACTION:
            reply->writeInt32(pingBinder());
            break;
        default:
            //调用子类的onTransact()
            err = onTransact(code, data, reply, flags);
            break;
    }

    if (reply != NULL) {
        reply->setDataPosition(0);
    }

    return err;
}

frameworks/av/media/libmedia/IMediaPlayerService.cpp

status_t BnMediaPlayerService::onTransact(
    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
    switch (code) {
        case CREATE: {
            CHECK_INTERFACE(IMediaPlayerService, data, reply);
            sp<IMediaPlayerClient> client =
                interface_cast<IMediaPlayerClient>(data.readStrongBinder());
            audio_session_t audioSessionId = (audio_session_t) data.readInt32();
            sp<IMediaPlayer> player = create(client, audioSessionId);
            reply->writeStrongBinder(IInterface::asBinder(player));
            return NO_ERROR;
        } break;
        case CREATE_MEDIA_RECORDER: {
            CHECK_INTERFACE(IMediaPlayerService, data, reply);
            const String16 opPackageName = data.readString16();
            //子类要实现createMediaRecorder
            sp<IMediaRecorder> recorder = createMediaRecorder(opPackageName);
            reply->writeStrongBinder(IInterface::asBinder(recorder));
            return NO_ERROR;
        } break;
        case CREATE_METADATA_RETRIEVER: {
            CHECK_INTERFACE(IMediaPlayerService, data, reply);
            //子类要实现createMetadataRetriever()
            sp<IMediaMetadataRetriever> retriever = createMetadataRetriever();
            reply->writeStrongBinder(IInterface::asBinder(retriever));
            return NO_ERROR;
        } break;
        case ADD_BATTERY_DATA: {
            CHECK_INTERFACE(IMediaPlayerService, data, reply);
            uint32_t params = data.readInt32();
            addBatteryData(params);
            return NO_ERROR;
        } break;
        case PULL_BATTERY_DATA: {
            CHECK_INTERFACE(IMediaPlayerService, data, reply);
            pullBatteryData(reply);
            return NO_ERROR;
        } break;
        case LISTEN_FOR_REMOTE_DISPLAY: {
            CHECK_INTERFACE(IMediaPlayerService, data, reply);
            const String16 opPackageName = data.readString16();
            sp<IRemoteDisplayClient> client(
                    interface_cast<IRemoteDisplayClient>(data.readStrongBinder()));
            if (client == NULL) {
                reply->writeStrongBinder(NULL);
                return NO_ERROR;
            }
            String8 iface(data.readString8());
            sp<IRemoteDisplay> display(listenForRemoteDisplay(opPackageName, client, iface));
            reply->writeStrongBinder(IInterface::asBinder(display));
            return NO_ERROR;
        } break;
        case GET_CODEC_LIST: {
            CHECK_INTERFACE(IMediaPlayerService, data, reply);
            sp<IMediaCodecList> mcl = getCodecList();
            reply->writeStrongBinder(IInterface::asBinder(mcl));
            return NO_ERROR;
        } break;
        default:
            return BBinder::onTransact(code, data, reply, flags);
    }
}

相关文章

网友评论

      本文标题:深入理解Android Binder机制

      本文链接:https://www.haomeiwen.com/subject/yyuewltx.html