美文网首页Deep Learning
Yolo-Darknet的安装和使用

Yolo-Darknet的安装和使用

作者: SnailTyan | 来源:发表于2017-08-03 11:12 被阅读619次

    1. Yolo-Darknet介绍

    YOLO是基于深度学习方法的端到端实时目标检测系统,目前有三个版本,Yolo-v1,Yolo-9000,Yolo-v2。Darknet是Yolo的实现,但Darknet不仅包含Yolo的实现,还包括其它内容。

    2. Darknet安装

    安装过程如下:

    # 代码下载
    git clone https://github.com/pjreddie/darknet.git
     
    # 修改Makefile
    cd darknet
    sed -i '1s/GPU=0/GPU=1/' Makefile
    sed -i '2s/CUDNN=0/CUDNN=1/' Makefile
    sed -i '3s/OPENCV=0/OPENCV=1/' Makefile
     
    # 安装
    make
     
    # 下载预训练的模型
    wget https://pjreddie.com/media/files/yolo.weights
    wget https://pjreddie.com/media/files/tiny-yolo-voc.weights
    wget http://pjreddie.com/media/files/yolov1.weights
    wget http://pjreddie.com/media/files/tiny-yolo.weights
    wget http://pjreddie.com/media/files/tiny-coco.weights
    wget http://pjreddie.com/media/files/yolo-coco.weights
    

    3. Yolo-v2用法

    • 使用预训练的模型进行目标检测
    ./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg
    
    Result
    • 输入图像名称进行检测
    $ ./darknet detect cfg/yolo.cfg yolo.weights
    # 输入 data/horses.jpg
    # 执行结果如下:
    layer     filters    size              input                output
        0 conv     32  3 x 3 / 1   608 x 608 x   3   ->   608 x 608 x  32
        1 max          2 x 2 / 2   608 x 608 x  32   ->   304 x 304 x  32
        2 conv     64  3 x 3 / 1   304 x 304 x  32   ->   304 x 304 x  64
        3 max          2 x 2 / 2   304 x 304 x  64   ->   152 x 152 x  64
        4 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128
        5 conv     64  1 x 1 / 1   152 x 152 x 128   ->   152 x 152 x  64
        6 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128
        7 max          2 x 2 / 2   152 x 152 x 128   ->    76 x  76 x 128
        8 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256
        9 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128
       10 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256
       11 max          2 x 2 / 2    76 x  76 x 256   ->    38 x  38 x 256
       12 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512
       13 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256
       14 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512
       15 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256
       16 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512
       17 max          2 x 2 / 2    38 x  38 x 512   ->    19 x  19 x 512
       18 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024
       19 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512
       20 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024
       21 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512
       22 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024
       23 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024
       24 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024
       25 route  16
       26 conv     64  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x  64
       27 reorg              / 2    38 x  38 x  64   ->    19 x  19 x 256
       28 route  27 24
       29 conv   1024  3 x 3 / 1    19 x  19 x1280   ->    19 x  19 x1024
       30 conv    425  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 425
       31 detection
    mask_scale: Using default '1.000000'
    Loading weights from yolo.weights...Done!
    Enter Image Path: data/horses.jpg
    data/horses.jpg: Predicted in 0.030211 seconds.
    horse: 46%
    horse: 59%
    horse: 91%
     
    (predictions:31): Gtk-WARNING **: cannot open display:
    
    result
    • 设置检测阈值
    $ ./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg -thresh 0.1
    
    result
    • 检测视频
    $ ./darknet detector demo cfg/coco.data cfg/yolo.cfg yolo.weights <video file>
    

    参考资料

    1. https://pjreddie.com/darknet/install/

    2. https://pjreddie.com/darknet/yolo/

    3. https://pjreddie.com/darknet/yolov1/

    相关文章

      网友评论

        本文标题:Yolo-Darknet的安装和使用

        本文链接:https://www.haomeiwen.com/subject/zaaulxtx.html